City University of Hong Kong Course Syllabus

offered by Department of Biostatistics with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Survival Analysis
Course Code:	BIOS6904
Course Duration:	1 Semester
~	
Credit Units:	3 CUs
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Assessment:	
Prerequisites:	N11
(Course Code and Title)	Nil
Precursors:	
(Course Code and Title)	Nil
Equivalent Courses:	
(Course Code and Title)	Nil
Exclusive Courses:	
(Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to educate students about estimation procedures needed for time to event and other right-censored data. It will begin with examples of such data and then describe types of censoring and truncation, distributions relevant for time to event data, and assumptions commonly made in conjunction with their analysis. Students will then learn about estimation techniques for univariate survival curves and common summaries of them such as medians, other quantiles, and restricted means. The course will then discuss models for multivariate situations with time to event outcomes including those with accelerated life and proportional hazards assumptions. These will begin by making parametric restrictions which are then relaxed to the nonparametric cases. Finally, frailty and other models for multivariate outcomes will be described. The R statistical software package is used throughout the course to analyze survival data examples and enable students, on completing the course, to analyze and interpret real time to event data arising from observational studies, clinical trials, and other sources.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	curricu learnin	very-enn Ilum rel g outco tick w priate)	lated omes here
			Al	A2	A3
1.	Explain the fundamental concepts and methods.	20%	\checkmark	\checkmark	
2.	Develop a solid understanding of the techniques.	20%	\checkmark	\checkmark	
3.	Conduct a thorough reading of the literature and know current state-of-the-art tools.	30%	\checkmark	\checkmark	\checkmark
4.	Apply the techniques and methods to real data applications.	30%	\checkmark	\checkmark	\checkmark
	•	100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Learning and Teaching Activities (LTAs) (LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description) No.		Hours/week (if	
		1	2	3	4	applicable)
Lectures	Learning through teaching is primarily based on lectures	\checkmark	\checkmark	\checkmark	\checkmark	3 hours/week
Assignments	Learning through take-home assignments helps students understand the key concepts and acquire the techniques	\checkmark	\checkmark	\checkmark	\checkmark	After class

4. Assessment Tasks/Activities (ATs) (*ATs are designed to assess how well the students achieve the CILOs.*)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks
	1	2	3	4		
Continuous Assessment: 60%						
Assignments	√	√	√	\checkmark	40%	Help to train students with basic knowledge, concepts, and analysis techniques
Midterm/quizzes	~	√	~	\checkmark	20%	Test students' capabilities in applying the knowledge to solve relevant problems
Examination: 40% (duration: 3 hours)	\checkmark	~	~	~	40%	Examination questions are designed to see how well students have achieved the learning objectives and acquired the requisite techniques for problem-solving
	I	1		I	100%	problem-solving

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignments	Problem solving	Consistently exhibits	Sufficiently applies	Demonstrates a	Displays basic	Shows limited
	skills	adept comprehension	time to event data	moderate	grasp of time to	comprehension of time
		of time to event data	analysis concepts to	understanding of	event data analysis	to event data analysis
		analysis principles and	moderately complex	time-to-event data	concepts and their	concepts and lacks the
		their practical	problems	analysis concepts and	application to	ability to apply them
		implementation		their practical	straightforward	to problem-solving
				application to	problems.	
				intermediate-level		
				problems.		
2. Midterm/quizzes	Problem solving	Exhibits a thorough	Displays sufficient	Exhibits a moderate	Shows basic	Displays limited grasp
	based on	grasp of time to event	understanding of time	level of	comprehension of	of time to event data
	comprehensive	data analysis concepts	to event data analysis	comprehension	time to event data	analysis concepts and
	understanding	and effectively applies	concepts and	regarding	analysis concepts	lacks the ability to
		them to intricate	effectively applies	time-to-event data	and applies them	apply them to
		problems	them to moderately	analysis concepts and	to straightforward	problem-solving
			complex problems	effectively applies	problems	
				them to		
				intermediate-level		
				problems.		
3. Examination	Problem solving	Consistently exhibits a	Effectively applies	Applies time-to-event	Applies time to	Lacks understanding
	based on	deep understanding of	time to event data	data analysis concepts	event data analysis	of time to event data
	comprehensive	time to event data	analysis concepts to	to intermediate-level	concepts to simple	analysis concepts and
	understanding	analysis concepts and	moderately complex	problems with a	problems with a	cannot apply them to
		effectively applies	problems,	moderate level of	basic	problem-solving
		them to complex	demonstrating	understanding.	understanding	
		problems	sufficient			
			understanding			

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

	1	1	[Γ
Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B^+, B)	(B-, C+, C)	(F)
1. Assignments	Problem solving	Consistently exhibits adept	Sufficiently applies time	Displays basic grasp of time	Shows limited comprehension
	skills	comprehension of time to	to event data analysis	to event data analysis	of time to event data analysis
		event data analysis	concepts to moderately	concepts and their	concepts and lacks the ability
		principles and their	complex problems	application to	to apply them to
		practical implementation		straightforward problems.	problem-solving
2. Midterm/quizzes	Problem solving	Exhibits a thorough grasp	Displays sufficient	Shows basic comprehension	Displays limited grasp of time
	based on	of time to event data	understanding of time to	of time to event data	to event data analysis concepts
	comprehensive	analysis concepts and	event data analysis	analysis concepts and	and lacks the ability to apply
	understanding	effectively applies them to	concepts and effectively	applies them to	them to problem-solving
		intricate problems	applies them to	straightforward problems	
			moderately complex		
			problems		
3. Examination	Problem solving	Consistently exhibits a deep	Effectively applies time to	Applies time to event data	Lacks understanding of time
	based on	understanding of time to	event data analysis	analysis concepts to simple	to event data analysis concepts
	comprehensive	event data analysis	concepts to moderately	problems with a basic	and cannot apply them to
	understanding	concepts and effectively	complex problems,	understanding	problem-solving
		applies them to complex	demonstrating sufficient		
		problems	understanding		

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Time to event analysis, survival models, failure time models, censoring, clinical trials

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

Nil.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1	. Survival Analysis: Techniques for Censored and Truncated Data, 2 nd ed. (Springer) by
	Klein, J. and Moeschberger, M.
2	Modern Applied Statistics with S (Springer) by Venables, W.N. and Ripley, B., Ch. 13.
3	Modeling Survival Data: Extending the Cox Model (Springer) by Therneau, T.M. And
	Grambsch, P.M.