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LECTURE III

WKB METHOD AND TURNING POINT

The transition from the classical physics of the late nineteenth century to the quan-
tum mechanics of the early twentieth century is examplified by the problem of find-
ing uniformly asymptotic solutions of the Liouville-Green (WKB) equation.

A.F. Nikiforov and V.B. Uvarov

1. Introduction

Differential equations of the type

y′′(x) + {λ2a(x) + b(x)}y(x) = 0 (1.1)

arise frequently in mathematical physics, where λ is a positive parameter.
We first consider the simplest case, in which a(x) is a real, positive, and twice
continuously differentiable function in a given finite or infinite interval (a1, a2).
We also assume that b(x) is a continuous real- or complex-valued function. Let

ξ =
∫
a1/2(x)dx, w = a1/4(x)y(x). (1.2)

It is readily verified that under this transformation, equation (1.1) becomes

d2w

dξ2
+ {λ2 + ψ(ξ)}w = 0, (1.3)

where

ψ(ξ) =
5
16
a′2(x)
a3(x)

− 1
4
a′′(x)
a2(x)

+
b(x)
a(x)

. (1.4)

The change of variables from (x, y) to (ξ, w) is known as the Liouville trans-
formation.

If we discard ψ in (1.3), then we obtain two linearly independent solutions
e±iλξ. In terms of the original variables, we get

y(x) ∼Aa−1/4(x) exp{iλ
∫
a1/2(x)dx}

+Ba−1/4(x) exp{−iλ
∫
a1/2(x)dx},

(1.5)

where A and B are arbitrary constants. Equation (1.5) is known as the
Liouville-Green approximation, whereas physicists refer to (1.5) as the WKB
(or semiclassical) approximation in recognition of the work of Wentzel (1926),



2

Kramers (1926) and Brillouin (1926). The contribution of these authors was,
however, not really the construction of approximation (1.5), but the connec-
tion of exponential and oscillatory approximations across a turning point, i.e.,
a zero of a(x).

In Sec. 2, we will give a rigorous proof of (1.5) from which one will learn a
basic argument frequently used to establish the validity of asymptotic solutions
to differential equations. From this proof, we will also see a double asymptotic
feature in the Liouville-Green approximation, that is, it sometimes holds either
as λ → ∞ with x fixed, or as x → ∞ with λ fixed. In Sec. 3, we introduce
the Langer transformation, and present a uniform asymptotic solution in
the neighborhood of a turning point. Sec. 4 deals with the case in which
the coefficient functions a(x) and b(x) in (1.1) have, respectively, a simple
and a double pole in the interval (a1, a2). The final section contains several
examples to illustrate the usefulness of the approximations obtained in the
previous sections. Most of the material for this lecture is taken from the
definitive book by Olver [8].

2. Successive Approximations

The most frequently used method to prove asymptotic results for differ-
ential equations is probably the method of successive approximations. In this
section, we shall illustrate this method by establishing the validity of (1.5). In
(1.3) we substitute

w(ξ) = eiλξ[1 + h(ξ)], (2.1)

and obtain
h′′(ξ) + i2λh′(ξ) = −ψ(ξ)[1 + h(ξ)]. (2.2)

We view (2.2) as an inhomogeneous second-order differential equation in h(ξ).
By the principle of variation of parameters, one can convert (2.2) into the
integral equation

h(ξ) = − 1
i2λ

∫ ξ

α
{1 − ei2λ(v−ξ)}ψ(v)[1 + h(v)]dv, (2.3)

where α is the value of ξ at x = a, a = a1 or a2, and we assume α is finite. One
can easily verify that any solution of this integral equation is also a solution
of the differential equation (2.2).

Define h0(ξ) = 0 and

hs+1(ξ) = − 1
i2λ

∫ ξ

α
{1 − ei2λ(v−ξ)}ψ(v)[1 + hs(v)]dv (2.4)

for s = 0, 1, 2, · · · . Since |1 − ei2λ(v−ξ)| ≤ 2, we have |h1(ξ)| ≤ 1
λΨ(ξ), where

Ψ(ξ) =
∫ ξ

α
|ψ(v)|dv. (2.5)
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Suppose that for s = k, we have

|hk(ξ) − hk−1(ξ)| ≤
Ψk(ξ)
λkk!

. (2.6)

Then, from (2.4) it follows that

hk+1(ξ) − hk(ξ) = − 1
i2λ

∫ ξ

α
{1 − ei2λ(v−ξ)}ψ(v)[hk(v) − hk−1(v)]dv. (2.7)

Hence

|hk+1(ξ) − hk(ξ)| ≤
1

λk+1k!

∫ ξ

α
|ψ(v)|Ψk(v)dv =

Ψk+1(ξ)
λk+1(k + 1)!

.

By induction, (2.6) holds for all k ≥ 1. Since Ψ(ξ) is bounded when ξ is finite,
the series

h(ξ) = lim
n→∞

hn(ξ) =
∞∑

k=0

{hk+1(ξ) − hk(ξ)} (2.8)

is uniformly convergent on any compact ξ-interval. Taking the limit as n→ ∞
shows that h(ξ) is a solution of the integral equation (2.3), and hence a solution
of the second-order differential equation (2.2). To show that h(ξ) is twice
continuously differentiable, we note that (2.4) gives

h′1(ξ) = −
∫ ξ

α
ei2λ(v−ξ)ψ(v)dv, (2.9)

and we have from (2.7)

h′k+1(ξ) − h′k(s) = −
∫ ξ

α
ei2λ(v−ξ)ψ(v)[hk(v) − hk−1(v)]dv. (2.10)

Again since |1 − ei2λ(v−ξ)| ≤ 2, by (2.6) we obtain

|h′k+1(ξ) − h′k(ξ)| ≤
Ψk+1(ξ)
λk(k + 1)!

, k = 0, 1, 2, · · · ,

which clearly shows the uniform convergence of the series
∑

{h′k+1(ξ)−h′k(ξ)}
in any compact interval. Furthermore, from (2.2) we have

h′′k+1(ξ) − h′′k(ξ) = −i2λ[h′k+1(ξ) − h′k(ξ)] − ψ(ξ)[hk(ξ) − hk−1(ξ)].

Uniform convergence of
∑

{h′′k+1(ξ)− h′′k(ξ)} is now evident, and h(ξ) is twice
continuously differentiable.

In summary, we have shown that equation (1.3) is satisfied by the function
w(ξ) in (2.1) with h(ξ) given by (2.8). Summation of (2.6) gives

|h(ξ)| ≤ exp
{

1
λ

Ψ(ξ)
}
− 1. (2.11)
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To express the result in terms of the original variables, we introduce the control
function

F (x) =
∫ {

1
a1/4

d2

dx2

(
1
a1/4

)
+

b

a1/2

}
dx (2.12)

and the notation
Va,x(F ) =

∫ x

a
|F ′(t)|dt (2.13)

for the total variation of F over the interval (a, x). It is readily verified that
Ψ(ξ) = Va,x(F ). Hence, on account of (1.2), equation (2.1) can be written as

y1(x) = a−1/4(x) exp{iλ
∫
a1/2(x)dx}[1 + ε1(λ, x)] (2.14)

with

|ε1(λ, x)| ≤ exp
{

1
λ
Va,x(F )

}
− 1. (2.15)

The same argument will yield the second linearly independent solution

y2(x) = a−1/4(x) exp{−iλ
∫
a1/2(x)dx}[1 + ε2(λ, x)], (2.16)

where ε2(λ, x) also satisfies (2.15), i.e.,

|ε2(λ, x)| ≤ exp
{

1
λ
Va,x(F )

}
− 1. (2.17)

For fixed x and large λ, the right-hand sides of (2.15) and (2.17) are both
O(λ−1). Hence, a general solution to (1.1) has the asymptotic behavior given
in (1.5).

In (2.15) and (2.17), we can take a = a1 and a = a2, respectively. If
Va1,a2(F ) <∞, then the O-terms obtained from (2.15) and (2.17) are uniform
with respect to x.

The corresponding result for the equation

y′′(x) − {λ2a(x) + b(x)}y(x) = 0 (2.18)

is that we have two linearly independent solutions of the form

y1(x) = a−1/4(x) exp{λ
∫
a1/2(x)dx}[1 + ε1(λ, x)] (2.19)

and
y2(x) = a−1/4(x) exp{−λ

∫
a1/2(x)dx}[1 + ε2(λ, x)], (2.20)
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where

|εj(λ, x)| ≤ exp
{

1
2λ

Vaj ,x(F )
}
− 1 (j = 1, 2). (2.21)

If Va1,a2(F ) <∞, then (2.21) gives

yj(x) = a−1/4(x) exp{(−1)j−1

∫
a1/2(x)dx}[1 +O(λ−1)], (2.22)

j = 1, 2, which holds uniformly for x ∈ (a1, a2).
The proof of (2.21) is very similar to that of (2.15). The integral equation

corresponding to (2.3) is

h(ξ) = − 1
2λ

∫ ξ

α1

{1 − e2λ(v−ξ)}ψ(v)[1 + h(v)]dv, (2.23)

where ξ = α1 corresponds to x = a1. Since ξ − v ≥ 0, instead of the bound
|1 − ei2λ(v−ξ)| ≤ 2 used in proving (2.6), we can now use the estimate

0 ≤ 1 − e2λ(v−ξ) < 1. (2.24)

As a result, we have the extra factor 1
2 in the total variation Va1,x(F ) in (2.21).

The result for j = 2 follows by replacing x in (2.18) by −x.
It is interesting to note that the error bounds in (2.21) can also be used

to give asymptotic properties of the approximations (2.19) and (2.20) in the
neighborhood of a singularity of the differential equation. Because of this
double asymptotic feature, the Liouville-Green approximation is indeed a re-
markably powerful tool for approximating solutions of linear second-order dif-
ferential equations. To illustrate our point, we let λ = 1 in (2.18), and assume
that Va1,a2(F ) <∞ and also

∫
a1/2(x)dx→ ∞ as x→ a−2 . (2.25)

Under these conditions, we shall show that the error term ε1(x) := ε1(1, x) in
(2.19) satisfies

ε1(x) → a constant as x→ a−2 . (2.26)

This together with (2.19) shows that there is a solution y3(x) such that

y3(x) ∼ a−1/4(x) exp
{∫

a1/2(x)dx
}
, x→ a−2 . (2.27)

Coupling (2.20) and (2.27), we obtain two linearly independent asymptotic
solutions as x→ a−2 .

We now proceed to prove (2.26). From (2.21), we know that ε1(x) is
bounded in (a1, a2). What (2.26) says is that ε1(x) does not oscillate infinitely
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often as x→ a2. In view of (2.25), we have α2 = ∞ by (1.2). Since Va1,a2(F ) <
∞, for any given ε > 0, there exists a positive number δ ∈ (α1,∞) such that

∫ ∞

δ
|ψ(v)|dv = ε.

Now assume that ξ ≥ δ, and subdivide the interval of integration in (2.9) at
δ. Note that in the present case, λ = 1 and “i” is absent; cf. (2.23). Thus, we
have

|h′1(ξ)| ≤
∫ δ

α1

e2(v−ξ)|ψ(v)|dv +
∫ ξ

δ
|ψ(v)|dv ≤ e2(δ−ξ)Ψ(δ) + ε.

Similarly, from (2.10) and (2.6) we obtain

|h′k+1(ξ) − h′k(ξ)| ≤
e2(δ−ξ)Ψk+1(δ)

(k + 1)! 2k
+

Ψk(∞)
k! 2k

ε

for k ≥ 1. The extra factor of 2−k comes from the fact that we use the estimates
in (2.24) for the case of eqution (2.18), instead of the bound |1− ei2λ(v−ξ)| ≤ 2
for the case of equation (1.1). From (2.8), it follows that

|h′(ξ)| ≤ 2e2(δ−ξ){eΨ(δ)/2 − 1} + eΨ(∞)/2 ε. (2.28)

The first term on the right-hand side tends to zero as ξ → ∞, and since ε is
arbitrary, (2.28) implies that h′(ξ) → 0 as ξ → ∞.

With λ = 1 in (2.23), it can be verified by differentiation that

h(ξ) = −1
2
h′(ξ) − 1

2

∫ ξ

α1

ψ(v)[1 + h(v)]dv. (2.29)

If we let

l0(ξ) =
∫ ξ

α1

ψ(v)dv, lk(ξ) =
∫ ξ

α1

ψ(v){hk(v) − hk−1(v)}dv (k ≥ 1),

then in view of (2.8) we can rewrite (2.29) as

h(ξ) = −1
2
h′(ξ) − 1

2

∞∑

k=0

lk(ξ). (2.30)

For ξ ≥ δ, we have from (2.6)

|lk(ξ) − lk(δ)| ≤
Ψk(ξ)
k! 2k

∫ ξ

δ
|ψ(v)|dv, k ≥ 0, (2.31)

since Ψ(ξ) is an increasing function. Coupling (2.30) and (2.31) gives

|h(ξ) − h(δ)| ≤ 1
2
eΨ(ξ)/2{Ψ(ξ) − Ψ(δ)} +

1
2
|h′(ξ) − h′(δ)|.
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The right-hand side tends to zero as ξ and δ approach infinity independently.
Hence, h(ξ) must tend to a constant as ξ → ∞; this completes the proof of
(2.26).

3. Turning Point Problem

The problem of finding asymptotic solutions to the differential equation
(2.18) becomes much more complicated, when the coefficient function a(x) has
a zero, say at x = x0, in the interval (a1, a2). Such a point is known as a turning
point of the differential equation. In this case, there is an ambiguity in taking
the square root of the function a(x), and hence the Liouville transformation
(1.2) is not well-defined.

For definiteness, we assume that a(x) has the same sign as x− x0; i.e.,

a(x)(x− x0) > 0 for all x 6= x0. (3.1)

Instead of (1.2), we now make the change of variables




2
3
ζ3/2 =

∫ x
x0
a(t)1/2dt, x0 ≤ x,

2
3
(−ζ)3/2 =

∫ x0

x [−a(t)]1/2dt, x < x0,

(3.2)

and

w(ζ) =
(
dζ

dx

)1/2

y. (3.3)

It is easily verified that (
dζ

dx

)2

=
a(x)
ζ

. (3.4)

The transformation (x, y) 7→ (ζ, w) was first introduced by Langer [3], under
which equation (1.1) becomes

d2w

dζ2
= {λ2ζ + ψ(ζ)}w, (3.5)

where

ψ(ζ) =
5
16
ζ−2 + {4a(x)a′′(x) − 5[a′(x)]2} ζ

16 a3(x)
+
ζb(x)
a(x)

. (3.6)

If ψ in (3.5) is neglected, then we have the Airy equation

d2w

dζ2
= λ2ζw,

two linearly independent solutions of which are the Airy functions Ai(λ2/3ζ)
and Bi(λ2/3ζ). Using the method of successive approximation, one can show,
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as in Sec. 2, that equation (3.5) has twice continuously differentiable solutions
given by

y1(x) = â−1/4(x)[Ai(λ2/3ζ) + ε1(λ, x)],

y2(x) = â−1/4(x)[Bi(λ2/3ζ) + ε2(λ, x)],
(3.7)

where â(x) = a(x)/ζ; see (3.3) and (3.4). To give an estimate for the error
terms ε1(λ, x) and ε2(λ, x), we first introduce the error-control function

H(x) := −
∫ ζ

0
|v|−1/2ψ(v)dv. (3.8)

In terms of the original variable, it is equivalent to

H(x) =
∫ x

x0

{
1

|a|1/4

d2

dx2

(
1

|a|1/4

)
− b

|a|1/2
− 5|a|1/2

16|ζ|3

}
dx. (3.9)

The modulus function M(x) and the weight function E(x) associated with the
Airy functions Ai(x) and Bi(x) are defined by E(x) = 1 for −∞ < x ≤ c,

E(x) = {Bi(x)/Ai(x)}1/2, c ≤ x <∞, (3.10)

and
M(x) = {E2(x)Ai2(x) +E−2(x)Bi2(x)}1/2, (3.11)

where E−1(x) = 1/E(x) and c denotes the negative root of the equation

Ai(x) = Bi(x)

with smallest absolute value. Numerical calculation has shown that c =
−0.36605, correct to five decimal places. The modulus and the weight have
the well known asymptotic behavior

M(x) ∼ π−1/2|x|−1/4, x→ ±∞, (3.12)

and

E(x) ∼ 21/2 exp
(

2
3
x3/2

)
, x→ +∞. (3.13)

The error terms ε1(λ, x) and ε2(λ, x) in (3.7) satisfy

|ε1(λ, x)|
M(λ2/3ζ)

≤ E−1(λ2/3ζ)
µ

{
exp

[
µVx,a2(H)

λ

]
− 1

}
(3.14)

and
|ε2(λ, x)|
M(λ2/3ζ)

≤ E(λ2/3ζ)
µ

{
exp

[
µVa1,x(H)

λ

]
− 1

}
, (3.15)
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where
µ = sup

(−∞,∞)
{π|x|1/2M2(x)} = 1.04 · · · . (3.16)

The above method can be extended to the more general equation

y′′(x) = λ2a(λ, x)y(x), (3.17)

where a(λ, x) has an asymptotic expansion

a(λ, x) ∼ a0(x) +
a1(x)
λ

+
a2(x)
λ2

+ · · · (3.18)

as |λ| → ∞, and a0(x) has a zero x0 in the interval (a1, a2). Applying the
Langer transformation (3.2) − (3.3) with a(x) replaced by a0(x), equation
(3.17) becomes

d2w

dζ2
= {λ2ζ + λφ(ζ) + ψ(λ, ζ)}w, (3.19)

where we put â(x) = a0(x)/ζ,

φ(ζ) = a1(x)/â(x) (3.20)

and

ψ(λ, ζ) ∼
∞∑

s=0

ψs(ζ)
λs

, (3.21)

with

ψ0(ζ) =
a2(ζ)
â(ζ)

− 1
â3/4(ζ)

d2

dζ2

{
1

â1/4(x)

}
(3.22)

and ψs(ζ) = as+2(ζ)/â(ζ) for s ≥ 1. An asymptotic series solution to (3.19)
is given by

w(ζ) ∼Ai
(
λ2/3ζ +

Φ
λ1/3

) ∞∑

s=0

As(ζ)
λs

+
1
λ4/3

Ai′
(
λ2/3ζ +

Φ
λ1/3

) ∞∑

s=0

Bs(ζ)
λs

,

(3.23)

where Φ = Φ(ζ) is defined by

Φ(ζ) =
1

2ζ1/2

∫ ζ

0

φ(v)
v1/2

dv. (3.24)

4. Simple Pole

Returning to equation (2.18), namely

y′′(x) = {λ2a(x) + b(x)}y(x), (4.1)
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we now assume that a(x) has a simple pole (say) at x0 and (x − x0)2b(x) is
analytic. For simplicity, we also assume that a(x) has the same sign as x−x0.
In this case, Olver [7] has introduced the transformation





ζ1/2 =
∫ x

x0

a1/2(t)dt, x ≥ x0,

(−ζ)1/2 =
∫ x0

x
{−a(t)}1/2dt, x ≤ x0,

(4.2)

and

w =
(
dζ

dx

)1/2

y (4.3)

which transforms (4.1) into the new equation

d2w

dζ2
=

{
λ2

4ζ
+ ψ̂(ζ)

}
w, (4.4)

where

ψ̂(ζ) =
b(x)
â(x)

+
1

â1/4(x)
d2

dζ2
{â1/4(x)} (4.5)

and â(x) = (dζ/dx)2 = 4ζa(x). If b(x) has a simple or double pole at x0, then
ψ̂(ζ) has the same kind of singularity at ζ = 0. Denote the value of ζ2ψ̂(ζ) at
ζ = 0 by 1

4(ν2 − 1), and write (4.4) in the form

d2w

dζ2
=

{
λ2

4ζ
+
ν2 − 1
4ζ2

+
ψ(ζ)
ζ

}
w (4.6)

with ψ(ζ) = ζψ̂(ζ) − 1
4(ν2 − 1)ζ−1. Note that ψ(ζ) is analytic at ζ = 0. In

terms of the original variable, 1
4(ν2−1) is the value of (x−x0)2b(x) at x = x0,

and

ψ(ζ) =
1 − 4ν2

16ζ
+

b(x)
4a(x)

+
4a(x)a′′(x) − 5a′2(x)

64a3(x)
. (4.7)

The differential equation (4.6) has a regular singularity at ζ = 0, and we
suppose that the range of ζ is a real interval (α1, α2) which contains ζ = 0 and
may be unbounded. We consider separately the intervals [0, α2) and (α1, 0].

If the term ψ(ζ)/ζ is neglected, then (4.6) becomes

d2w

dζ2
=

{
λ2

4ζ
+
ν2 − 1
4ζ2

}
w. (4.8)

Two linearly independent solutions of (4.8) are ζ1/2Iν(λζ1/2) and ζ1/2Kν(λζ1/2).
It can be demonstrated, as in the previous sections, that if ζ−1/2ψ(ζ) is ab-
solutely integrable on [0, α2), then equation (4.6) has two linearly independent
solutions w1(λ, ζ) and w2(λ, ζ) such that

w1(λ, ζ) = ζ1/2Iν(λζ1/2)[1 +O(λ−1)], (4.9)
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w2(λ, ζ) = ζ1/2Kν(λζ1/2)[1 +O(λ−1)], (4.10)

as |λ| → ∞, where the O-terms hold uniformly with respect to ζ ∈ [0, α2).
When ζ is negative, two linearly independent solutions of the reduced

equation (4.8) are |ζ|1/2Jν(λ|ζ|1/2) and |ζ|1/2Yν(λ|ζ|1/2). Hence, if ζ−1/2ψ(ζ)
is absolutely integrable on (α1, 0], equation (4.6) has two solutions

w1(λ, ζ) = |ζ|1/2Jν(λ|ζ|1/2)[1 +O(λ−1)], (4.11)

w2(λ, ζ) = |ζ|1/2Yν(λ|ζ|1/2)[1 +O(λ−1)], (4.12)

as |λ| → ∞, which hold uniformly for ζ ∈ (α1, 0].

5. Examples

As an illustration of the results obtained in Secs. 2-4, here we give three
concrete examples. The first one demonstrates that the Liouville-Green (WKB)
approximation is indeed a powerful tool for approximating solutions of linear
second-order differential equations. The second one provides a uniform as-
ymptotic approximation for the polynomials orthogonal with respect to the
weight exp(−x4) on the real line. The final example deals with the Jacobi
function ϕ(α,β)

µ (t), t > 0.
Example 1. In an interesting paper [9] on a very abstract topic (namely,

Hardy fields), M. Rosenlicht considered solutions of the equation

y′′(x) = xxy(x) (5.1)

as x→ ∞. In view of the rapid growth of the coefficient function xx as x→ ∞,
it is really not easy to guess the large x-behavior of the solution y(x). Let us
try the results in Sec. 2, and choose λ = 1, a(x) = xx and b(x) = 0 in (2.18).
The control function F (x) in (2.12) is given by

F (x) =
1
16

∫
[(1 + lnx)2x−x/2 − 4x−(1+x/2)]dx.

Clearly, Vx,∞(F ) → 0 as x→ ∞. Hence, (2.20) gives the recessive solution

y2(x) ∼ x−x/4 exp
(
−

∫
xx/2dx

)
, x→ ∞. (5.2)

A dominant solution is provided by (2.27), namely,

y3(x) ∼ x−x/4 exp
(∫

xx/2dx

)
, x→ ∞. (5.3)

An asymptotic expansion of the integral
∫
xx/2dx can be obtained by integra-

tion by parts.
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Example 2. In [6], Nevai has studied the asymptotic behavior of the or-
thogonal polynomials

pn(x) = γnx
n + γn−1x

n−1 + · · · , γn > 0, (5.4)

associated with the weight function exp(−x4) on the real line R. These poly-
nomials satisfy the recurrence relation

xpn(x) = an+1pn+1(x) + anpn−1(x), n = 0, 1, · · · , (5.5)

with p0(x) = γ0 > 0 and p1(x) = γ0x/a1. The coefficients an are determined
successively from the equation

n = 4a2
n(a2

n+1 + a2
n + a2

n−1), n = 1, 2, · · · , (5.6)

where a2
0 = 0 and a2

1 = Γ(3
4)/Γ(1

4). A two-term asymptotic expansion for an

has been given by Lew and Quarles [4]. They showed that

a2
n =

(
n

12

)1/2[
1 +

1
24n2

+O

(
1
n4

)]
, n→ ∞. (5.7)

If we let
φn(x) = a2

n+1 + a2
n + x2, (5.8)

then Shohat [10] and Nevai [5] independently showed that the function

z(x) = pn(x)[φn(x)]−1/2 exp
(
−x

4

2

)
(5.9)

satisfies the differential equation

z′′ + f(n, x)z = 0, (5.10)

where

f(n, x) = 4a2
n[4φn(x)φn−1(x) + 1 − 4a2

nx
2 − 4x4 − 2x2φn(x)−1]

− 4x6 − 4x4φn(x)−1 − 3x2φn(x)−1 + 6x2 + φn(x)−1.
(5.11)

If we make the change of variable

x = λ1/4w with λ =
4n
3
, (5.12)

then equation (5.10) becomes

d2z

dw2
= λ2

[
a0(w) +

a1(w)
λ

+
a2(w)
λ2

+ · · ·
]
z, (5.13)
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where a0(w) = (4w6 − 3w2 − 1) = (2w2 +1)2(w2 − 1), a1(w) = −(1+2w2) and

a2(w) = −20w4 − 64w2 + 17
9(1 + 2w2)2

. (5.14)

Since a0(w) vanishes at w = ±1, we have exactly the extended form of the
turning point problem mentioned in (3.17)− (3.18), and the result (3.23) can
be applied. The details of this study is given in [1].

Example 3. Let α, β and µ be real numbers with µ > 0 and α 6= −1,−2, · · · .
The Jacobi function is defined by

ϕ(α,β)
µ (t) = 2F1

[
1
2
(α+ β + 1− iµ),

1
2
(α+ β + 1 + iµ);α+ 1;− sinh2 t

]
(5.15)

for t > 0, where 2F1(a, b; c; z) is the Gaussian hypergeometric function. This
function is related to the Jacobi polynomial

Γ(α+ 1)Γ(n+ 1)
Γ(α+ n+ 1)

P (α,β)
n (x) = 2F1

[
−n, n+α+β+ 1;α+ 1;

1
2
(1−x)

]
. (5.16)

The last formula furnishes the extension of the polynomial P (α,β)
n (x) to arbi-

trary values of the degree n. From (5.15) and (5.16), it is evident that

ϕ(α,β)
µ (t) =

Γ(α+ 1)Γ
(

1
2(iµ− α− β + 1)

)

Γ
(

1
2(iµ+ α− β + 1)

) P
(α,β)
1
2
(iµ−α−β−1)

(cosh 2t), (5.17)

and for this reason, ϕ(α,β)
µ (t) is called the Jacobi function.

It is known that ϕ(α,β)
µ (t) is the unique, even, C∞-function on R which

satisfies

v′′(t) + [(2α+ 1) coth t+ (2β + 1) tanh t]v′(t)

+ [µ2 + (α+ β + 1)2]v(t) = 0
(5.18)

and v(0) = 1; see [2, p.2]. If we set

u(t) = (sinh t)α+ 1
2 (cosh t)β+ 1

2ϕ(α,β)
µ (t), (5.19)

then it is easily verified that

u′′(t) +
{
µ2 +

1
4 − α2

sinh2 t
−

1
4 − β2

cosh2 t

}
u(t) = 0. (5.20)

When α > −1
2 , we also have u(0) = 0.

To apply the asymptotic theory of Olver discussed in Sec. 4, we restrict
ourselves to the case α ≥ 0 and introduce the new variables

(−ζ)
1
2 = t, ζ < 0; W (ζ) = (−ζ)

1
4u(t). (5.21)
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The transformed equation is given by

d2W

dζ2
=

{
µ2

4ζ
+
α2 − 1

4ζ2
+
ψ(ζ)
ζ

}
W (ζ), ζ < 0, (5.22)

where

ψ(ζ) =
1
4

{ 1
4 − α2

ζ
+

[ 1
4 − α2

sinh2(−ζ)
1
2

−
1
4 − β2

cosh2(−ζ)
1
2

]}
. (5.23)

Note that ψ(ζ) is analytic at ζ = 0.
For negative ζ, equations (4.11) and (4.12) give two asymptotic solutions

to (5.22), one involving the Bessel function Jα(µ
√
−ζ) and the other involving

Yα(µ
√
−ζ). To identify the function (−ζ)

1
4u(t) in (5.21) with one of these two

solutions or a linear combination of them, we note that from (5.19) and (5.21)
we have

(−ζ)
1
4u(t) ∼ (−ζ)(α+1)/2, ζ → 0−. (5.24)

Since Jα(x) ∼ (x/2)α/Γ(α + 1) for x near zero, it follows from (4.11) and
(5.21) that

(sinh t)α+ 1
2 (cosh t)β+ 1

2ϕ(α,β)
µ (t) ∼ 2αΓ(α+ 1)

µα
t

1
2Jα(µt); (5.25)

for details, see [11].
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