City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester A 2022/23

Part I Course Overview	y .
Course Title:	Advanced Radiotherapy Physics
Course Code:	PHY6524
Course Duration:	One semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	NA
Precursors: (Course Code and Title)	NA
Equivalent Courses : (Course Code and Title)	NA
Exclusive Courses: (Course Code and Title)	PHY8524 Advanced Radiotherapy Physics

Part II Course Details

1. **Abstract**

(A 150-word description about the course)

This course will advance understanding of radiotherapy related physics and modern radiotherapy methods. The latter includes external beam radiotherapy with x-ray and proton sources, and also brachytherapy.

Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting*	Discov	ery-eni	riched
		(if	curricu	lum re	lated
		applicable)	learnin	g outco	mes
			(please	tick	where
			approp	riate)	
			AI	A2	A3
1.	Physics principles related to radiotherapy. Emphasis will be on production of ionizing radiation and subsequent	50		~	
	interactions with matter.				
2.	Physics of external beam radiotherapy.	40		✓	
3.	Physics of Brachytherapy.	10		✓	
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%			

If weighting is assigned to CILOs, they should add up to 100%.

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	CILO No.			Hours/week (if	
		1	2	3	4		applicable)
Lecture	Presentation of course material	12	11	3			2
Tutorial	Review of course material	7	5	1			1

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.						Weighting*	Remarks
	1	2	3	4				
Continuous Assessment: 30 %								
Monthly assignments	15	12	3				30	
Final examination	35	28	7				70	
Examination: _70_% (duration: 2 hours)								

^{*} The weightings should add up to 100%.

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Exam	Having an in-depth understanding of radiotherapy related physics and modern radiotherapy methods; and ability of applying the knowledge and theory to solve problems independently.		Significant	Satisfactory	Below marginal level
2. Assignments	The student completes all assessment tasks/activities and the work demonstrates correct understanding of the key concepts.		Significant	Satisfactory	Below marginal level

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A^{+}, A, A_{-})	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Exam	Having an in-depth understanding of radiotherapy related physics and modern radiotherapy methods; and ability of applying the knowledge and theory to solve problems	High	Significant	Satisfactory	Basic	Below marginal level
	independently.					

2. Assignments	The student completes all	High	Significant	Satisfactory	Basic	Below	marginal
	assessment tasks/activities					level	
	and the work demonstrates						
	correct understanding of the						
	key concepts.						
	-						

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Physics of radiotherapy:

- X-ray/gamma ray scattering and absorption
- Particle (eg. proton, electron, neutron) scattering and absorption
- X-ray/gamma ray production and attenuation
- High-energy particle production and stopping
- Dosimetry (calculations and measurements)

External beam radiotherapy:

- Linear accelerator (LINAC) therapy
- Proton beam therapy
- Boron neutron capture therapy
- Treatment planning
- Quality assurance

Brachytherapy:

- Source production, transfer, storage, and handling
- Afterloading
- Treatment planning
- Quality assurance

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1	T
1.	
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Radiation Physics for Medical Physicists
2.	
3.	
• • •	