City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester A 2022/23

Part I Course Overview	v
Course Title:	Advanced Nuclear Medicine Physics
Course Code:	PHY6523
Course Duration:	One semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	NA
Precursors: (Course Code and Title)	NA
Equivalent Courses : (Course Code and Title)	NA
Exclusive Courses: (Course Code and Title)	PHY8523 Advanced Nuclear Medicine Physics

Part II Course Details

1. Abstract

(A 150-word description about the course)

This course will advance understanding of nuclear medicine for imaging and radiotherapy. Topics covered will include: radionuclide production, transfer, storage, and handling; detection methods; and applications.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting* (if applicable)	learnin (please	llum rel g outco tick	ated omes
			approp	riate)	
			AI	A2	A3
1.	Radiation physics related to nuclear medicine. Emphasis will be on radioactive decay sources and interactions interaction of high energy photons and particles with heavy metals and body tissues.	50		~	
2.	Nuclear medicine imaging: principles and applications.	30		✓	
3.	Nuclear medicine therapy: principles and applications.	20		✓	
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%			1

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	CILO No.		Hours/week (if		
		1	2	3	4		applicable)
Lecture	Presentation of course material	13	8	5			2
Tutorial	Review of course material	7	4	2			1

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting*	Remarks	
	1	2	3	4			
Continuous Assessment: <u>30</u> %							
Monthly assignments	15	9	6			30	
Final examination	35	21	14			70	
Examination: <u>70</u> % (duration: 2 hours)							
* TI . 1 . 1 . 1 . 1	000/					10001	

^{*} The weightings should add up to 100%.

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Exam	Understanding of fundamental	High	Significant	Moderate	Not even marginal level
	concepts and applications of				
	radiation physics related to				
	nuclear medicine, imaging and				
	radiotherapy.				
2. Assignments	Explain key concepts of	High	Significant	Moderate	Not even marginal level
	nuclear medicine for				
	imaging and radiotherapy				

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Exam	Understanding of fundamental	High	Significant	Moderate	Basic	Not even marginal
	concepts and applications of					level
	radiation physics related to					
	nuclear medicine, imaging and					
	radiotherapy.					
2. Assignments	Explain key concepts of	High	Significant	Moderate	Basic	Not even marginal
	nuclear medicine for					level
	imaging and radiotherapy					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Radiation physics:

- Radionuclide production, transfer, storage, handling, and disposal
- Gamma ray scattering and absorption
- High-energy particle scattering and absorption
- Dosimetry (calculations and measurements)

Imaging applications:

- Uptake measurement
- Scintigraphy
- Single-photon emission computed tomography (SPECT)
- Positron emission tomography (PET)

Therapeutic applications:

- Treating thyroid and blood disorders
- Other disorders

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Radiation Physics for Medical Physicists
2.	
3.	