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Abstract Efficient electrocatalysts are vital to large-cur-

rent hydrogen production in commercial water splitting for

green energy generation. Herein, a novel heterophase

engineering strategy is described to produce polymorphic

CoSe2 electrocatalysts. The composition of the electrocat-

alysts consisting of both cubic CoSe2 (c-CoSe2) and

orthorhombic CoSe2 (o-CoSe2) phases can be controlled

precisely. Our results demonstrate that junction-induced

spin-state modulation of Co atoms enhances the adsorption

of intermediates and accelerates charge transfer resulting in

superior large-current hydrogen evolution reaction (HER)

properties. Specifically, the CoSe2-based heterophase cat-

alyst with the optimal c-CoSe2 content requires an over-

potential of merely 240 mV to achieve 1,000 mA�cm-2 as

well as a Tafel slope of 50.4 mV�dec-1. Furthermore, the

electrocatalyst can maintain a large current density of

1,500 mA�cm-2 for over 320 h without decay. The results

reveal the advantages and potential of heterophase junction

engineering pertaining to design and fabrication of low-

cost transition metal catalysts for large-current water

splitting.

Keywords Heterophase junction; Spin-state; Hydrogen

evolution reaction; Large current electrochemical hydrogen

production; Water splitting

1 Introduction

Electrochemical water splitting is a promising hydrogen

production technique offering a cleaner and more sustain-

able alternative to traditional pyrolysis of petrochemical

products that generate carbon emissions. However, com-

mercial adoption has been hindered by the limited avail-

ability and high cost of precious metal catalysts,

particularly Pt and Pd, which are so far essential to the

hydrogen evolution reaction (HER) [1–3]. Therefore, low-

cost and efficient electrocatalysts are crucial to commercial

water splitting for green energy generation. Moreover,

industrial water splitting systems are typically operated at

large current densities (C 500 mA�cm-2) for extended

periods and the electrocatalysts must be able to tolerate

harsh conditions such as high pressure and temperature for

a long period of time at large current densities [4, 5]. These
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conditions are challenging and require durable and robust

materials [6]. In this respect, low-cost alternative catalysts

that can deliver large current densities are crucial to the

development of commercial water splitting [7].

Earth-abundant, non-noble transition metal-based elec-

trocatalysts such as transition metal chalcogenides [8–11],

phosphides [12, 13], nitrides [14, 15], carbides [16, 17],

and alloys [18, 19] have been proposed to substitute for

precious metals for HER. In particular, cobalt selenide is

known for its excellent electrocatalytic activity, high

electrical conductivity, and efficient electron transfer in

electrocatalysis [20, 21]. CoSe2 generally exists in two

phases, cubic (c-CoSe2) and orthorhombic (o-CoSe2),

which undergo reversible transformation due to the similar

atomic arrangements of cubic pyrite CoSe2(100) and

orthorhombic marcasite CoSe2(101) [22]. Yu et al. have

described the phosphorus-doping-induced phase transition

from the cubic to orthorhombic phases in CoSe2 and found

an overpotential of 104 mV at 10 mA�cm-2 in 1 mol�L-1

KOH, onset potential of - 31 mV, and negligible activity

decay after 20 h due to the favorable electronic structure

and local coordination environment created by the phase

transition [23]. They have subsequently proposed alkali-

heated synthesis to prepare mixed-phase CoSe2 using

c-CoSe2 as the precursor to obtain a nearly homogeneous

distribution of cubic and orthorhombic phases, which

requires an overpotential of 124 mV for 10 mA�cm-2 and

good durability for 400 h [22]. The mixture of o-CoSe2 and

c-CoSe2 offers a significant advantage in that it enhances

the covalent bonding between cobalt and selenium atoms.

However, it is important to note that Co atoms have

unpaired spin electrons which produce spin magnetic

effects that can affect the electrocatalytic properties

[24, 25]. The splitting energy and electron pairing energy

of Co ions are relatively close, rendering them possible to

obtain different spin-states by proper strategies [26, 27].

However, the impact of spin-state changes during the phase

transition from o-CoSe2 to c-CoSe2 on the HER perfor-

mance is not well understood, especially for large-current

density HER in which efficient mass transfer and charge

transport are critical. In fact, modulation of the spin-state of

Co atoms in CoSe2 from the perspective of HER opti-

mization at large current densities has seldom been repor-

ted and is also quite challenging.

Herein, heterophase junction engineering is implemented

to construct a composite electrocatalyst on carbon cloth (CC)

consisting of o-CoSe2 and c-CoSe2 with a distinct hetero-

phase interface between the two phases. Since the contents of

o-CoSe2 and c-CoSe2 in the composite can be modulated

precisely by this technique, the spin-state of Co atoms at the

heterophase interface can be tuned to expose more active

sites, improve hydrogen adsorption, accelerate charge

transfer, and improve the catalytic characteristics. The

optimized catalyst delivers excellent HER performance at a

large current density as exemplified by a small overpotential

of 240 mV for a large current density of 1,000 mA�cm-2 in

addition to exceptional stability in an acidic medium at an

extremely large current density of 1,500 mA�cm-2 for

320 h. The excellent HER properties are attributed to the

regulated spin-state of Co atoms, abundant active hydrogen

adsorption centers, and fast charge transfer. The novel het-

erophase junction engineering can be extended to construct

stable and excellent electrodes composed of low-cost tran-

sition metal-based electrocatalysts for water splitting and

other electrocatalysis.

2 Experimental

2.1 Materials preparation

1 mmol cobalt nitrate hexahydrate, 3 mmol ammonium

fluoride, and 5 mmol urea were added to 30 ml deionized

water (DW), stirred for 30 min, transferred to a Teflon

lined autoclave containing a piece of clean CC (2 cm 9

3 cm), and heated to 100 �C for 8 h. After cooling, the

product was rinsed several times with DW, dried, and

designated as Co(OH)2/CC.

6 mmol selenium powder and the Co(OH)2/CC precur-

sor were placed in the upstream area and downstream area

of the dual-temperature tube furnace, respectively. The

furnace was heated to 340–600 �C for 1 h under an H2/N2

atmosphere with 8% H2. The products were designated as

pure cubic CoSe2 (c-CoSe2), pure orthorhombic CoSe2 (o-

CoSe2), and composites (n-c-CoSe2), where n represents

the content of c-CoSe2 in the composite as a percentage.

2.2 Materials characterization

Scanning electron microscopy (SEM) was performed on

the FEI/Philips XL30 Esem-FEG instrument and trans-

mission electron microscopy (TEM) was carried out on the

FEI/Philips Tecnai 12 BioTWIN. A high-resolution TEM

(HRTEM) equipped with energy-dispersive spectroscopy

(EDS) was used to study the detailed crystal structure and

composition of the samples. X-ray diffraction (XRD) was

conducted on the LabX XRD-6100 instrument with a Cu

Ka source to determine the crystal structure and phase

composition. The Raman scattering spectra were collected

on the HR RamLab instrument to investigate the vibra-

tional modes and X-ray photoelectron spectroscopy (XPS)

was carried out on the Thermo Scientific K-Alpha instru-

ment with monochromatic Al Ka X-ray to determine the

chemical states. X-ray absorption spectra (XAS) including

X-ray absorption near-edge structure (XANES) and

extended X-ray absorption fine structure (EXAFS) of the
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sample at Co K-edge were collected at the 1W1B station of

Beijing Synchrotron Radiation Facility (BSRF), China.

2.3 Electrochemical measurement

The electrochemical measurements were taken on the CHI

660E electrochemical workstation (Shanghai CH Instru-

ment, China) in a 0.5 mol�L-1 H2SO4 aqueous solution. A

three-electrode system in which a graphite rod served as

the counter electrode, a saturated calomel electrode (SCE)

was the reference electrode, and modified CC acted as the

working electrode was employed. Linear sweep voltam-

metry (LSV) was conducted at a scanning rate of

5 mV�s-1 and all the potentials were corrected with 80%

iR and referred to the reversible hydrogen electrode

(RHE) based on Nernst equation E(RHE) = E(SCE) ?

0.242 ? 0.059 9 pH, where the pH of the 0.5 mol�L-1

H2SO4 electrolyte was determined to be 0.50 by the FE28

pH meter (Mettler Toledo). The Tafel slopes were derived

by fitting the linear portion of the Tafel plots. Electro-

chemical impedance spectroscopy (EIS) was performed

with an amplitude of 5 mV in the frequency range from

100,000 to 0.1 Hz at an initial potential of - 0.4 V vs.

SCE. The electrochemically active surface area (ECSA)

was calculated from the cyclic voltammetry (CV) data in

the voltage range of 0–0.1 V vs. SCE and the stability

was evaluated by recording the HER current densities at

constant potentials at different times.

2.4 Density-functional theory calculation

The calculation was performed with the Vienna Ab Initio

Simulation Package (VASP) [28]. The spin-unrestricted

PAW-PBE function was utilized to evaluate the exchange

and correlation energies and the structures were relaxed

using the conjugate gradient algorithm implemented in the

VASP code. The convergence criteria for the forces and total

energies on all the atoms were set to be less than

0.2 eV�nm-1 and 1 9 10-4 eV, respectively, and the kinetic

energy cutoff was 500 eV. To model the heterophase junc-

tion of CoSe2, a slab model consisting of six layers of Co and

Se atoms was employed. The 3 9 3 9 1 k-mesh was

employed for Brillouin zone integration with a 1.5 nm thick

vacuum layer included to avoid possible interactions.

3 Results and discussion

Figure 1a illustrates the phase conversion of CoSe2 during

selenation. Co(OH)2 is prepared hydrothermally and

o-CoSe2 is produced by chemical vapor deposition (CVD)

with Se powder as the source. When the temperature is

increased, o-CoSe2 morphs into c-CoSe2 gradually. Owing

to the volume change during the transition from Co(OH)2
to o-CoSe2 and c-CoSe2, a rough surface with more

exposed active sites is created. The heterophase junction

between o-CoSe2 and c-CoSe2 is formed during phase

conversion, and more importantly, the amount of each

phase can be modulated precisely. Hence, the electronic

configuration of the atoms at the interface can be regulated

to optimize hydrogen adsorption and charge transfer effi-

ciency in HER. SEM images of the Co(OH)2 precursor in

Figs. S1a, 1b and c reveal nanowire arrays with a smooth

surface around CC. After selenation at 340–400 �C, the
array structure remains, although the nanowires become

rough on the surface and there are surface humps as shown

in Figs. S1b, S2a–d, 1d and e, which are in fact beneficial

as a result of exposure of more active sites. Moreover, the

nanowire arrays around the carbon fibers provide open

channels for electrolyte diffusion and gaseous product

evolution giving rise to fast kinetics. Nevertheless, the

nanowire structure collapses when the temperature is over

450 �C (Fig. S2e–h) resulting in fewer surface sites expo-

sure and poorer catalytic activity.

TEM image of the annealed product in Fig. 1f discloses

nanowires with a diameter of * 150 nm and a rough

surface similar to that observed by SEM. HRTEM image in

Fig. 1g exhibits clear fringe spacings of 0.248 and

0.202 nm ascribed to the o-CoSe2 (120) and c-CoSe2 (220)

planes, respectively. More importantly, there is a clear

heterophase junction at the interface between the o-CoSe2
(120) and c-CoSe2 (220) planes. The heterophase junction

produces lattice mismatch and electronic structure modi-

fication at the interface to alter the adsorption behavior of

reactants/intermediates/products and charge transfer during

electrocatalysis. Figure 1h shows selected area electron

diffraction (SAED) pattern which is consistent with the

information imparted by HRTEM. The (011), (120), (210)

and (220) planes of o-CoSe2 and (220), (222) and (400)

planes of c-CoSe2 match JCPDS Nos. 53-0449 and

65-3327, respectively. The elemental maps in Fig. 1i reveal

that Co and Se are distributed uniformly in the nanowires.

The Raman scattering spectra in Fig. 2a show peaks at

484 and 524 cm-1 related to the Eg and E2g
1 modes of the

tetrahedral and octahedral sites and that at 692 cm-1 cor-

responds to the A1g mode of the octahedral sites of o-CoSe2
in line with the literature [29, 30]. The peaks at 462, 508

and 664 cm-1 associated with the cubic phase of CoSe2 are

located at smaller wavenumbers than those of o-CoSe2
[29, 31]. When the reaction temperature goes up, the peaks

shift gradually to smaller wavenumbers indicative of phase

transition from orthorhombic to cubic.

The crystal structure and composition are determined by

XRD, as shown in Figs. S3, 2b. The diffraction peaks at

30.8�, 34.5�, 40.0� and 47.7� of the sample prepared at

340 �C can be indexed to the (101), (111), (210) and (211)
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Fig. 1 a Schematic illustration of heterophase junction engineering of CoSe2; SEM images of b, c Co(OH)2 precursor and d,
e samples annealed at 400 �C; f TEM image, g HRTEM image, h SAED pattern and i elemental maps of 30-c-CoSe2

Fig. 2 a Raman scattering spectra; b XRD patterns with corresponding bonding structures shown on right (dotted lines marking
intensity changes); c c-CoSe2 contents as a function of reaction temperature; d Co2?/Co3? of catalysts with different c-CoSe2 contents
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planes of o-CoSe2 (JCPDS No. 53-0449). As the temper-

ature goes up, the diffraction peaks of o-CoSe2 weaken,

while the signal from the c-CoSe2 phase appears. When the

temperature is 600 �C, the pure c-CoSe2 phase is indicated
by peaks at 30.5�, 34.2�, 37.6� and 43.7� stemming from

the (200), (210), (211) and (220) planes of c-CoSe2
(JCPDS No. 65-3327), suggesting that the o-CoSe2 phase is

produced at a low temperature but converted into c-CoSe2
with temperature increasing. Based on the intensity of the

diffraction peaks, the amounts of the two phases are esti-

mated and presented in Table S1 and Fig. 2c, which show

that the c-CoSe2 phase increases with temperature

increasing. The pure phase of o-CoSe2 and c-CoSe2 can be

obtained at 340 and 600 �C, respectively. When the tem-

perature is 350, 400, and 450 �C, the products contain both

o-CoSe2 and c-CoSe2 with the c-CoSe2 concentration being

20%, 30% and 40%, respectively (n-c-CoSe2, where

n = 20, 30 or 40). The change in the c-CoSe2 phase gives

rise to regulated electronic interactions and active sites at

the interface which impacts the electrocatalytic properties.

Co and Se are observed from the survey XPS spectra in

Fig. S4. The high-resolution spectra of Co 2p in Fig. S5 can

be deconvoluted into Co3? peaks at 779.0 eV for Co 2p3/2
and 794.0 eV for Co 2p1/2 as well as Co

2? at 780.7 eV for

Co 2p3/2 and 796.4 eV for Co 2p1/2 [32, 33]. The peaks at

784.6 and 801.2 eV are satellite peaks. The peak area of

Co2? increases while the area of Co3? decreases with

temperature increasing (Fig. 2d and Table S2), indicating

that the amount of surface Co2? goes up with the c-CoSe2
phase increasing in the composite, which may result from

the interaction between the CoSe2 and elemental Se

adsorbed at the surface [34, 35]. A larger Co2? concen-

tration facilitates the adsorption of hydrogen to form Co–H

bonds and accelerates electron transfer to enhance the HER

activity [36].

Furthermore, synchrotron-based X-ray absorption fine

structure spectroscopy (XAFS) was conducted to investi-

gate the local structure of CoSe2 using a Co foil as a

contrast sample. Figure 3a shows XANES spectra of

o-CoSe2, 30-c-CoSe2 and c-CoSe2 at the Co K-edge, which

show the pre-edge feature indicates that Co ions are in the

octahedral environment [37]. The absorption edges of the

samples shift slightly toward lower energy with the

c-CoSe2 concentration increasing corresponding to a lower

valence state Co species, which agrees well with the

increased Co2? revealed by XPS results. Figure 3b dis-

plays the corresponding Fourier transforms of the k3-

weighted extended X-ray absorption fine structure oscilla-

tions (FT-EXAFS) for the o-CoSe2, 30-c-CoSe2 and

c-CoSe2. The o-CoSe2, 30-c-CoSe2 and c-CoSe2 samples

exhibit strong peaks at * 0.21 nm, which can be assigned

to the typical Co-Se bond in different phases [38]. The

peak located at * 0.22 nm for Co foil results from the Co–

Co bond [39]. In addition, the wavelet transform (WT)

contour plots of o-CoSe2, 30-c-CoSe2 and c-CoSe2 are

required to analyze the localized coordination environ-

ments (Fig. 3c-f). The WT maximum intensity for

c-CoSe2 is 109.6 nm–1, while it is 108.4 nm–1 for 30-c-

CoSe2 and 102.2 nm–1 for o-CoSe2, probably originating

from the difference of Co-Se bonds in o-CoSe2 and

c-CoSe2 [23, 40], associated with the unsaturated sites and

defects at the surface [41]. Hence, XPS and XAFS results

clearly demonstrate that the heterophase structure produces

the optimized electronic structure and local coordination

environment of CoSe2 to modulate the hydrogen adsorption

behavior and enhance the electrocatalytic properties.

Figure 4a shows the phase conversion from o-CoSe2 to

c-CoSe2. In both phases, the Co atom is octahedrally

bonded to the adjacent Se atom. However, the octahedra

are corner-shared in the cubic pyrite type, while they are

edge-shared in the orthorhombic marcasite type [42]. The

heterophase interface is composed of o-CoSe2(120) and

c-CoSe2(220) planes as revealed by HRTEM. The Co2?

has two electronic configurations according to the number

of unpaired 3d electrons, namely the low spin-state (t2g
6 eg

1)

with one unpaired 3d electron and the high spin-state (t2g
5

eg
2) with three unpaired 3d electrons (Fig. S6a, b). The eg
orbital is unevenly occupied, yielding a strong Jahn–Teller

effect in both the low spin-state and high spin-state to

produce a more distorted atomic arrangement in CoSe2,

giving rise to more active site exposure and optimal

adsorption of hydrogen. The d-band centers of o-CoSe2 and

c-CoSe2 are calculated to be –2.96 and –1.94 eV, respec-

tively, while it is –1.79 eV for the heterophase junction

(Fig. 4b). The notable up-shift of the d-band center

demonstrates promoted hydrogen adsorption and hydrogen

evolution [43]. The density of states (DOS) analysis in

Fig. 4c indicates that the heterophase junction has a lot of

new states that have been formed near the Fermi level (EF)

compared to o-CoSe2 and c-CoSe2 [44], in which the spin-

up and spin-down channels are asymmetrical. As shown in

Fig. S6c–e, the mid-gap states near the EF are mainly from

the Co 3d orbitals on account of the strong Jahn–Teller

effect [45]. The Co 3d orbitals induce strong hybridization

in the energy range of - 1.8 to - 0.7 eV in the spin-up

and spin-down channels. The states across the EF are

contributed by Co-dz2 and Co-dx2�y2 , while the states in the

energy range of - 1.8 to - 0.7 eV are contributed by Co-

dxy, Co-dxz, and Co-dyz, indicating the hybridization

between Co atoms either directly or via the intervening Se

orbitals. The total magnetic moment of the heterophase

junction is 4.70 lB which is larger than those of o-CoSe2
(0.55 lB) and c-CoSe2 (1.72 lB), as shown in Fig. 4d, and

mainly contributed by the Co atoms. Additionally, the
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specific spin polarizability shown in Fig. 4e (Supporting

note 1) indicates that the pristine o-CoSe2 and c-CoSe2
show very weak spin polarization, whereas the formation

of heterophase junction results in strong spin polarization,

which may lead to fast charge transfer [46]. Therefore,

optimization the spin-state of the Co atoms at the hetero-

phase interface may contribute to accelerated HER, espe-

cially at a large current.

The HER characteristics of the electrocatalysts are

investigated using a three-electrode configuration in the

Fig. 3 a XANES spectra recorded at Co K-edge; b corresponding FT-EXAFS spectra; wavelet transform spectra of c Co foil, d o-
CoSe2, e 30-c-CoSe2 and f c-CoSe2

Fig. 4 a Schematic illustration showing phase conversion from o-CoSe2 to c-CoSe2 via heterophase junction engineering; b d-band
center diagrams; c DOS diagrams; d magnetic moment and e polarizability of o-CoSe2, c-CoSe2 and heterophase CoSe2
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0.5 mol�L-1 H2SO4 electrolyte. Figures S7, 5a show LSV

curves, indicating that 30-c-CoSe2 can afford a current

density of 10 mA�cm-2 at an overpotential of only

130 mV, which is smaller than those of transition metal

chalcogenides such as MoS2/graphene (183 mV) [47], a-
MoB2 (149 mV) [48], CoSe2-450 (165 mV) [49], and

CoSe/MoSe2 (192 mV) [50]. The excellent HER activity of

30-c-CoSe2 arises from the synergistic effects of the het-

erophase junction, moderated Co2? concentration at the

surface, optimized spin-state, more active sites, and higher

charge transfer efficiency. The electrocatalysts achieve a

large current density of 1,000 mA�cm-2. In particular,

30-c-CoSe2 requires an overpotential of merely 240 mV to

generate 1,000 mA�cm-2, which is superior to o-CoSe2
(560 mV), 20-c-CoSe2 (474 mV), 40-c-CoSe2 (306 mV),

and c-CoSe2 (511 mV), as shown in Table S3. The ECSA

related to the number of surface-active sites is normally

determined by the electrochemical double-layer capaci-

tance (Cdl). The Cdl values of the electrocatalysts calcu-

lated from the CV curves are presented in Fig. S8.

Figure 5b and Table S3 show that 30-c-CoSe2 has a Cdl

value of 35.8 mF�cm-2 that is much larger than those of

o-CoSe2 (23.1 mF�cm-2), 20-c-CoSe2 (32.8 mF�cm-2),

40-c-CoSe2 (26.4 mF�cm-2), and c-CoSe2 (23.7 mF�cm-2).

Generally, a larger Cdl translates into more active site

exposure and better catalytic activity. LSV curves of the

electrocatalysts based on the ECSA shown in Fig. S9

suggests the enhanced intrinsic activity of the 30-c-CoSe2

compared to the pure o-CoSe2 and c-CoSe2, possibly

originating from the heterophase junction-induced opti-

mization of the active center.

The Tafel plots are produced to understand the HER

kinetics, as shown in Fig. 5c. The Tafel slope (Table S3) of

30-c-CoSe2 electrocatalyst is 50.4 mV�dec-1 which is

distinctly smaller than those of o-CoSe2 (75.4 mV�dec-1),

20-c-CoSe2 (67.8 mV�dec-1), 40-c-CoSe2
(50.9 mV�dec-1) and c-CoSe2 (66.9 mV�dec-1) and even

smaller than those observed from cobalt-based compounds

such as Mo0.6-CoSe2 NS@NF (69 mV�dec-1) [51],

Co(S0.71Se0.29)2 NPs (85.7 mV�dec-1) [52], Sn-CoSe2
(86.0 mV�dec-1) [53], and CC/MOF-CoSe2@MoSe2
(96.61 mV�dec-1) [54]. Figure 5d summarizes the over-

potentials for 1,000 mA�cm-2, Tafel slopes and ECSA of

the electrocatalysts, and 30-c-CoSe2 has the smaller over-

potential, Tafel slope, and larger ECSA. EIS results in

Figs. S10, 5e confirm the smaller charge transfer resistance

of 30-c-CoSe2 and faster HER kinetics. The comparison of

overpotential and Tafel slope of 30-c-CoSe2 with recently

reported electrocatalysts, including (1) a-MoB2 [48], (2)

Ni2P/NF [55], (3) nano-KFO/NF [56], (4) F-Co2P/Fe2P/IF

[57], (5) Ta/TaS2 [58], (6) CuMo6S8/Cu [59], (7) Ni2(1-x)
Mo2xP [60], (8) Ni-Co-P/NF [61], (9) LiCoBPO [62], (10)

HC-MoS2/Mo2C [63], (11) MoSx-Fe@UiO-66-(OH)2 [64]

and (12) Co-NC-AF [65], is shown in Fig. 5f and Table S4.

Clearly, the excellent HER performance of the hetero-

phase-engineered composite electrocatalyst (30-c-CoSe2)

Fig. 5 Electrochemical properties of different samples: a polarization curves; b ECSA; c Tafel plots; d comparison of overpotentials,
Tafel slopes and ECSA; e EIS of (1) o-CoSe2, (2) 20-c-CoSe2, (3) 30-c-CoSe2, (4) 40-c-CoSe2 and (5) c-CoSe2; f comparison of
overpotential and Tafel slope of 30-c-CoSe2 with those of typical transition metal-based electrocatalysts reported recently
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is a result of the open and ordered structure of the nanowire

arrays on the carbon fibers facilitating mass transport and

gas release. Besides, the moderate Co2? concentration

derived by the c-CoSe2 phase improves the electron

transfer efficiency and the heterophase interface between

o-CoSe2 and c-CoSe2 increases the active centers and

optimizes the electronic configuration for accelerated HER.

The robust stability is another key to commercial appli-

cation and 30-c-CoSe2 is evaluated by the chronoampero-

metric method at large current densities of 500, 1,000 and

1,500 mA�cm-2, as shown in Figs. 6a, S11. The results

disclose excellent stability even at an ultra-large current

density of 1,500 mA�cm-2 for 320 h as illustrated by the i-

t curve in Fig. 6a, which is superior to the previous CoSe2
electrocatalysts as listed in Table S5. Meanwhile, the LSV

curve shifts merely 25 mV at 1,000 mA�cm-2, nearly the

same as that acquired before the long-term test as revealed by

Fig. 6b. The morphology and surface chemistry of the

electrocatalyst after the test are examined and the nanowires

with a rough surface are still surrounded by carbon fibers

after operation for 320 h as shown in Fig. S12a, b. HRTEM

image of 30-c-CoSe2 electrocatalyst after the long-term test

in Fig. S13 indicates the lattices with spacings of 0.252 and

0.201 nm originated from o-CoSe2 (120) and c-CoSe2 (220)

planes, respectively, which match well with the heterophase

interface in the fresh sample. The survey XPS spectrum after

the long-term test discloses the presence of Se, Co, C and O

(Fig. S14a). The high-resolution Co 2p spectra in Fig. S14b

show Co3? peaks at 778.9 eV for Co 2p3/2 and 793.7 eV for

Co 2p1/2 as well as Co2? at 780.6 eV for Co 2p3/2 and

796.4 eV for Co 2p1/2, which are in line with those observed

from the pristine sample. Additionally, the ratio of Co2?/

Co3? is calculated to be 1.13 which is also very close to the

initial value. All these results suggest the excellent physical

and chemical stability of 30-c-CoSe2 electrocatalyst.

The Faraday efficiency of 30-c-CoSe2 for HER is

assessed as shown in Fig. 6c. The apparatus consists of a

sealed H-type electrolytic cell with a proton exchange

membrane that separates the anode and cathode. The vol-

ume of gas produced on the cathode is determined by the

water displacement method. As shown in Fig. 6d, 53.0 ml

hydrogen is produced during the continuous test for 70 min

at a current of 100 mA, indicating a fast hydrogen pro-

duction rate of 1.9 mmol�h-1 in the acidic electrolyte.

Fig. 6 a Stability evaluation of 30-c-CoSe2 electrocatalyst; b polarization curves acquired before and after long-term test on 30-c-
CoSe2; c photograph of HER system consisting of 30-c-CoSe2 electrocatalyst and H2 gas generation determined by water
displacement method; d experimental and theoretical amounts of H2 produced by 30-c-CoSe2 at a current of 100 mA in 0.5 mol�L-1

H2SO4
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Furthermore, the Faraday efficiency is determined to be

99.6% (Supporting note 2), which is very close to the

theoretical value.

4 Conclusion

The heterophase junction of o-CoSe2/c-CoSe2 is designed

and fabricated by phase engineering. The spin-state of Co

atoms at the heterophase interface is modulated to produce

an up-shift of the d-band center, a closer position to the EF of

the density of states, enhanced polarization of the Co 3d

orbitals, optimized adsorption of intermediates, as well as

accelerated charge transfer in electrocatalysis. As a result,

the heterophase junction electrocatalyst delivers excellent

HER performance as manifested by a small overpotential of

240 mV to achieve a current density of 1,000 mA�cm-2 and

exceptional stability at an ultra-large current density of

1,500 mA�cm-2 for 320 h in an acidic media. The results

reveal a novel strategy to improve the HER activity at large

currents by tuning the spin-state of transition metal-based

electrocatalysts. This precise phase engineering concept can

be extended to form other types of heterophase junctions in

electrocatalysts. This precise phase engineering strategy can

be extended to produce other heterophase junctions of tran-

sition metal-based electrocatalysts for water splitting as well

as other electrocatalysis.
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