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Abstract A novel photonic crystal fiber (PCF) based on 
silica is designed for stable transmission of orbital angular 
momentum (OAM) modes. Numerical analysis shows that 
the PCF can support more than 134 OAM modes in a broad 
wavelength range of 1200–2000 nm. In addition, it boasts 
a large effective mode area between 259.97–423.99 μm2, 
confinement loss of all the eigenmodes at  10−9–10−10 dB/m, 
nonlinear coefficients within 0.47  W−1/km with the mini-
mum being 0.25  W−1/km at 1550 nm. The excellent prop-
erties reveal that the PCF has large potential in ultra-high 
capacity OAM mode division multiplexing for fiber com-
munication systems.

Keywords Photonic crystal fibers · Orbital angular 
momentum · Large effective mode area · Nonlinear 
coefficients

Introduction

On the heels of the rapid development of mobile internet 
technology, the capacity crunch of optical fiber communi-
cation systems has become increasingly serious. The mul-
tiplexing technology is widely used to tackle the challenge, 
and in particular, space division multiplexing (SDM) is a 
promising solution to keep up with the growing capacity 
demand. SDM uses multiplicity of space channels such as 
multi-cores or multi-mode fibers [1–4] and orbital angular 
momentum (OAM) mode division multiplexing (MDM) is 
an important method to achieve SDM. OAM beams with 
different topological charge numbers add extra degree of 
freedom and can be used as the information carriers [5]. 
The technology has been proven to be suitable for free-space 
data transmission [6–8]. Theoretically, OAM modes have 
infinite topological charges and the different OAM modes 
are orthogonal to each other so that the method can improve 
the capacity and efficiency in optical communication [9].

In order to achieve stable transmission of OAM modes, 
researchers have designed different kinds of optical fibers 
operating at near-infrared or terahertz band such as hexago-
nal lattice PCFs [10], microstructure ring fibers [11, 12], 
and doped fibers [13, 14]. The ring core photonic crystal 
fiber can transmit OAM modes better and with improved 
propagation characteristics if the structure is optimized. So 
far, many PCFs have been proposed to support transmis-
sion of OAM modes [15, 16]. For example, Zhang et al. 
have proposed the OAM fiber family based on the circular 
photonic crystal fiber (C-PCF) structure to support up to 
42 OAM modes. Zhang et al. have demonstrated a circular 
photonic crystal fiber for 110 OAM modes [3], but this type 
of PCF requires a larger refractive index difference between 
the core and cladding. The conventional methods use high 
refractive index-doped ring cores [17, 18] or background 
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materials [19]. For example, Kuiri designed a PCF with a 
high index ring of lithium niobate (LiNbO3) in the back-
ground layer of silica, it can support 124 orbital angular 
momentum modes at 1.55 μm [20]. Another way is to design 
cladding air holes to increase the air-filling fraction [21], 
but the PCFs frequently process a narrower ring core and 
smaller mode area. Although large effective mode area fib-
ers have advantages such as the low nonlinearity, low loss, 
and bending resistance [12, 22, 23], those supporting OAM 
modes have rarely been reported and most of the effective 
mode area is less than 100 μm2. For example, the reported 
maximum effective mode areas are 50.54 μm2  (HE8,1) and 
70.19 μm2  (HE13,1) at 1.55 μm [24, 25] and the effective 
mode areas are only 60 ~ 85 μm2 [26], 78.03 μm2–88.65 μm2 
[27], and 70–90 μm2 [28].

In this paper, we describe a large effective mode area 
photonic crystal fiber that support transmission of 134 OAM 
modes in the broad wavelength range of 1200–2000 nm. 
The PCF composed of pure silica consists of four layers of 
pores in the cladding. The effective mode areas of all the 
eigenmodes are above 270 μm2, and the maximum is 391.90 
μm2 at a wavelength of 1.55 μm. The nonlinear coefficients 
are within 0.47  W−1/km, and the confinement losses are 
 10−9–10−11 dB/m with relatively flat dispersion variations.

Structure

The cross-sectional schematic of the PCF is depicted in 
Fig. 1. It comprises 4 rings of air holes in the cladding and a 

large air hole in the center. From inside to outside, the total 
numbers of the air holes are N1 = 72, N2 = 36, N3 = 18, and 
N4 = 18 and the corresponding diameters are d1 = 2.4 μm, 
d2 = 6  μm, d3 = 3.2  μm, and d4 = 16  μm. The distances 
between the pore center and the fiber center are l1 = 32 μm, 
l2 = 36.2 μm, l3 = 41 μm, and l4 = 47.4 μm, and the radius of 
the central air hole is r = 28 μm. Pure silica with a refractive 
index (RI) of 1.444 at 1.55 μm is the fiber materials [5]. 
The proposed PCF is relatively complex, and it is difficult 
to produce using traditional stacking method and extrusion 
method. In recent years, the newly emerged 3D printing 
technology is used to manufacture optical fiber preform and 
successfully fabricated hollow PCF [29, 30]. It is believed 
that the proposed PCF can also be manufactured in future 
with the progress of the 3D printing preform technology. 
The analysis is performed by the full vectorial finite element 
method (FEM).

The OAM modes supported by the PCF are described by 
the combination of the vector eigenmodes, and the number 
of OAM modes is calculated by the following formulas [31]:

where l is the topological charge indicating the order of the 
OAM modes, m represents the index in the spiral direction 

(1)
{

OAM
±

±l,m
= HEeven

l+1,m
± jHEodd

l+1,m

OAM
∓

±l,m
= EHeven

l−1,m
± jEHodd

l−1,m

l > 1

(2)
{

OAM
±

±l,m
= HEeven

l+1,m
± jHEodd

l+1,m

OAM
∓

±l,m
= TM0,m ± jTE0,m

l = 1,

Fig. 1  a Cross section of the PCF and b parameters of the PCF
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and is determined to be 1 in order to avoid accidental degen-
eracies [32], the superscript “±” is the circular polarization 
direction of the OAM modes, and the subscript “±” is the 
rotation direction of the wavefront phase profile. The OAM 
modes are regarded as the superposition of the even and 
odd modes of HE or EH with a π/2 phase shift, and the sup-
ported OAM modes are listed in Table 1. The total number 

is 134. Figure 2 shows the electric field intensity distribution 
of some vector eigenmodes  (HE3,1,  HE14,1,  HE22,1,  HE35,1, 
 EH1,1,  EH12,1,  EH20,1 and  EH33,1) in z-direction at 1,550 nm. 
It is noticed that the electric field intensity of the  HEl,1 mode 
is distributed outside of the ring core, and the electric field 
intensity of the  EHl,1 mode is distributed inside of the ring 
core [17]. In order to better analyze the characteristics of 

Table 1  OAM modes 
supported by the PCF

OAM mode OAM
±

±1,1
OAM

±

±2,1
OAM

±

±3,1
OAM

±

±4,1
OAM

±

±5,1
OAM

±

±6,1
OAM

±

±7,1

HE mode HE2,1 HE3,1 HE4,1 HE5,1 HE6,1 HE7,1 HE8,1

EH mode – EH1,1 EH2,1 EH3,1 EH4,1 EH5,1 EH6,1

OAM mode OAM
±

±8,1
OAM

±

±9,1
OAM

±

±10,1
OAM

±

±11,1
OAM

±

±12,1
OAM

±

±13,1
OAM

±

±14,1

HE mode HE9,1 HE10,1 HE11,1 HE12,1 HE13,1 HE14,1 HE15,1

EH mode EH7,1 EH8,1 EH9,1 EH10,1 EH11,1 EH12,1 EH13,1

OAM mode OAM
±

±15,1
OAM

±

±16,1
OAM

±

±17,1
OAM

±

±18,1
OAM

±

±19,1
OAM

±

±20,1
OAM

±

±21,1

HE mode HE16,1 HE17,1 HE18,1 HE19,1 HE20,1 HE21,1 HE22,1

EH mode EH14,1 EH15,1 EH16,1 EH17,1 EH18,1 EH19,1 EH20,1

OAM mode OAM
±

±22,1
OAM

±

±23,1
OAM

±

±24,1
OAM

±

±25,1
OAM

±

±26,1
OAM

±

±27,1
OAM

±

±28,1

HE mode HE23,1 HE24,1 HE25,1 HE26,1 HE27,1 HE28,1 HE29,1

EH mode EH21,1 EH22,1 EH23,1 EH24,1 EH25,1 EH26,1 EH27,1

OAM mode OAM
±

±29,1
OAM

±

±30,1
OAM

±

±31,1
OAM

±

±32,1
OAM

±

±33,1
OAM

±

±34,1

HE mode HE30,1 HE31,1 HE32,1 HE33,1 HE34,1 HE35,1

EH mode EH28,1 EH29,1 EH30,1 EH31,1 EH32,1 EH33,1

Fig. 2  a–h Electric field intensity distributions of the eigenmodes  HE3,1,  HE14,1,  HE22,1,  HE35,1,  EH1,1,  EH12,1,  EH20,1 and  EH33,1 in z-direction
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OAM modes, the phase distribution of the typical OAM+

13,1
 

and OAM+

34,1
 modes in the ring core is calculated as shown 

in Fig. 3. It can be seen that the phase distribution of the 
ring core shows clear periodic variation and smaller phase 
distortion. It means that the proposed PCF can keep a high 
OAM mode quality.

In our efforts to optimize the PCF, it is found that the 
thickness of the ring core and diameter of the first layer 
air holes affect the number of OAM modes. Therefore, the 
thickness of the ring core is optimized first by changing the 
radius r of the central air hole, as shown in Fig. 4a. The 
OAM mode number increases with r because the smaller 
the width of the high refractive index ring core, the larger 
the effective refractive index difference. Figure 4c shows 
the effective refractive index difference of  HEm+1,1 and 
 EHm-1,1. The OAM mode number is calculated for different 
wavelengths, as shown in Fig. 4b. The PCF supports less 
OAM mode number at short wavelength for r = 27.2 μm. It 
is because that the Δneff between the mode groups decreases 
with decreasing wavelength. Some higher-order eigenmodes 
which can constitute OAM modes at longer wavelength can-
not meet the condition of Δneff >  10−4 at shorter wavelength. 
For r = 28.0 μm, the PCF can support 134 OAM modes in 
the range of 1.2–2.0 μm, and hence, r = 28.0 μm is chosen 
as the optimal value considering the benefits of more OAM 
modes and a larger bandwidth.

Similarly, the influence of the diameter d1 of the first layer 
air hole on the OAM mode number is derived as shown in 
Fig. 5a. The OAM mode number increases with d1 because a 
larger air hole accentuates the effective refractive index dif-
ference. Figure 5c shows the effective refractive index differ-
ence of some vector modes for d1 = 2.4 μm and the effective 
refractive index difference reaches the maximum. Hence, 
the PCF supports 134 OAM modes transmission in a wider 
bandwidth of 1.2–2.0 μm, as shown in Fig. 5b. Meanwhile, 

an excessively large air hole does not fit in the smaller space, 
and therefore, d1 = 2.4 μm is determined to be the optimal 
value. In addition, the parameters of d2, d3, d4 have less 
influence on the supported OAM mode number, and they 
determine the confinement loss and mode quality. In order 
to improve the performance of the PCF by increasing the air-
filling ratio of the cladding[17, 33], d2 = 6 μm, d3 = 3.2 μm, 
and d4 = 16 μm are chosen as the optimal values.

Simulation and analysis

Effective refractive index difference

In order to avoid OAM modes degenerating into the  LPl,m 
mode, the effective refractive index difference (Δneff) 
between the hybrid modes in the same propagation constant 
group  (HEm+1,1 and  EHm-1,1) needs to be more than  10−4 
[34]. The difference of the refractive index can be deter-
mined by Eq. (3) [35]:

where neff is the effective refractive index, and Δneff is the 
difference of the effective refractive indexes. The effec-
tive refractive indexes of all vector modes are calculated as 
shown in Fig. 6. They decrease with increasing wavelength 
and that of the lower-order mode is larger than that of the 
higher-order mode at the same wavelength. The PCF thus 
supports more than 70 vector modes in the wavelength range 
between 1.2 and 2.0 μm.

The effective refractive index differences Δneff between 
the HE and EH modes are plotted in Fig. 7 which shows 
that Δneff increases with increasing wavelength and the 
effective refractive index difference of the higher-order 
modes is smaller than that of the lower-order modes. All 

(3)Δneff =
|||neff

(
HEl+1,m

)
− neff

(
EHl−1,m

)|||,
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Fig. 3  As λ = 1.55 μm, the phase distribution of OAM+

13,1
 mode (a) and OAM+

34,1
 mode (b) in the azimuth direction
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the effective refractive index differences are up to  10−4 
thus avoiding the interactions between the vector modes 
and ensuring stable transmission of the OAM modes.

Confinement loss

The confinement loss (CL) of the PCF describes the 
energy attenuation during light transmission in the opti-
cal fiber. It produces signal degradation and influences 
proper transmission of the OAM modes and a smaller CL 
is beneficial. The CL mainly depends on the arrangement 
of the air holes and intrinsic materials absorption. If the 
distribution of air holes in the cladding is denser and the 
circular symmetry is better, the cladding will have stronger 
bound on the light field and the corresponding CL will be 
lower [36]. In order to confine light and reduce CL, the 

PCF consists of four layers of air holes. The CL is calcu-
lated by the following formula:

where Im(neff) is the imaginary part of the effective refrac-
tive index, and k0 = 2π/λ is the wave number in vacuum.

Figure 8 displays the relationship between the confine-
ment loss and wavelength for different eigenmodes. The 
CL fluctuates greatly with wavelength and most of the CL 
is concentrated in the range of  10−9–10−11 dB/m, which is 
superior to that of recently reported PCFs with a large effec-
tive mode area [35]. This PCF is demonstrated to have low 
CL boding well for information transmission.

(4)CL =
20

ln10
k0Im

(
neff
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Fig. 4  a OAM mode number versus central air hole at λ = 1.55 μm; b OAM mode number at different wavelengths for different r; c effective 
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Dispersion

Dispersion is one of the inherent characteristics of optical 
fibers and influences the optical communication capacity. 
The total dispersion D is determined by materials disper-
sion Dm and waveguide dispersion Dw as expressed in the 
following [37]:

where λ is the wavelength, c is the velocity of light in vac-
uum, Re(neff) is the real part of the effective index of the 
OAM vector modes, and n(λ) is the refractive index of silica 
and given by Sellmeier equation:

(5)D(�) = Dw(�) + Dm(�) = −
�

c

d2Re
(
neff

)

d�2
−

�

c

d2n(�)

d�2
,

where   A 1 =  0 .696166300 ,   A 2 =  0 .407942600 , 
 A3 = 0.897479400,  B1 = 0.0684043,  B2 = 0.1162414, and 
 B3 = 9.896161. Compared with waveguide dispersion, mate-
rials dispersion has a smaller impact on the total dispersion, 
and therefore, materials dispersion is neglected in computing 
the total dispersion [32].

Figure 9 shows the dispersion of the supported eigen-
modes in the wavelength range of 1.2–2.0 μm. The disper-
sion curves of the supported eigenmodes exhibit monotonous 
increase with wavelength, and the slope of the dispersion 
curve of the higher-order eigenmodes is greater than that of 
lower-order eigenmodes. Furthermore, the dispersion of the 
EH modes is larger than that of the HE modes for the same 
order vector modes. At 1.55 μm, the maximum dispersion 
is 232.33 ps/nm/km  (EH33,1), lowest dispersion is 79.78 ps/
nm/km  (HE1,1), and the total dispersion variation for all the 
eigenmodes is less than 210 ps/nm/km.

Effective mode area and nonlinear coefficient

The nonlinear coefficient γ which is another crucial param-
eter of optical fibers can be calculated by the following equa-
tion [38]:

where n2 = 2.6 ×  10−20  m2/W is the nonlinear refractive index 
of fused silica, and Aeff is the effective mode area defined as 
follows [39]:

(6)n2(λ) = 1 +
A1�

2

�2 − B1
2
+

A2�
2

�2 − B2
2
+

A3�
2

�2 − B3
2
,

(7)� =
2πn2

�Aeff
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Fig. 8  Confinement loss as a function of wavelength: a HE modes and b EH modes
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Figure 10 shows the effective mode area Aeff of the 
supported eigenmodes in the wavelength range of 
1.2–2.0 μm. The PCF has a larger effective mode area and 
all of the effective mode areas are above 259 μm2 with 
the maximum being 391.90 μm2 for  TM0,1 at 1.55 μm. 
Owing to the large effective mode area, the PCF may have 
smaller nonlinear coefficients according to Eq. (7). The 
calculated nonlinear coefficients are shown in Fig. 11, 
and the maximum is only 0.47  W−1/km. At 1.55 μm, the 
nonlinear coefficient is 0.25  W−1/km for the  EH30,1 mode, 
which is superior to those reported in Refs. [39] and 
[40]. The lower nonlinear coefficient mitigates nonlinear 

(8)Aeff =

(
∬ |E(x, y)|2dxdy

)2

∬ |E(x, y)|4dxdy
.

optical signal distortion [39] to benefit optical communi-
cation. Finally, the performance of the PCF is compared 
to that of existing PCFs for OAM mode transmission and 
is shown in Table 2. Our PCF supports more OAM modes 
in addition to boasting a larger effective mode area and 
lower nonlinear coefficient.

Conclusion

A large effective mode area PCF which supports 134 OAM 
modes in the wavelength range of 1.2–2.0 μm is designed 
and demonstrated. The PCF consists of a ring core with 
four layers of air holes in the cladding and pure silica as 
the fiber materials. The characteristics of the PCF are ana-
lyzed and optimized by numerical simulation. The PCF 
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Fig. 9  Dispersion as a function of wavelength: a HE modes and b EH modes
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Fig. 10  Effective mode area as a function of wavelength: a HE modes and b EH modes
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shows lower CL  (10−9–10−10 dB/m), larger effective mode 
area (259.97–423.99 μm2), and smaller nonlinear coefficient 
(0.17–0.47  W−1/km). The results reveal that the PCF has 
large potential in OAM multiplexing-based optical fiber 
communication due to the larger communication capacity.
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