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A B S T R A C T   

Large-scale hydrogen production via electrochemical water splitting is important to renewable energy generation 
and the global drive toward low carbon emission. However, because of the sluggish kinetics and high energy 
consumption, efficient and economical electrocatalysts are required for the hydrogen evolution reaction (HER) in 
order to make it commercially viable. Herein, we present a dual-regulation strategy to optimize the electronic 
structure of NiMo selenides (NMS) composite for HER. By capitalizing on the electronic interactions between Ni 
and Mo atoms through the in situ phase separation of Ni0.85Se and MoSe2 from NiMoO4, the electronic config-
uration is optimized. The selective reduction is simultaneously performed to tune the oxidation states of Ni and 
Mo, which is more favorable for the adsorption of water molecules and desorption of hydrogen. The NMS 
electrocatalyst shows an overpotential of 124 mV for a current density of 10 mA cm− 2, a small Tafel slope of 63 
mV dec− 1 in alkaline electrolytes, Faradaic efficiency of 98.9 % in hydrogen production, as well as excellent long- 
term stability for 170 h. The results reveal a valuable strategy of synergistic dual-regulating the electronic 
structure of the active sites to design and prepare inexpensive and high-performance electrocatalysts for alkaline 
HER and related applications.   

1. Introduction 

Hydrogen is a clean and sustainable fuel that has the potential to 
replace traditional fossil fuels in the global effort to reduce the carbon 
footprint and combat climate change. The production of hydrogen 
through the hydrogen evolution reaction (HER) in water electrolysis 
represents a convenient and environmentally friendly technique [1,2]. 
However, HER suffers from sluggish kinetics and high overpotentials 
[3,4]. Pt-group metals are the benchmark electrocatalysts for HER, 
while their natural scarcity and high cost have hampered wide industrial 
implementation [5–7]. Therefore, more economical and readily avail-
able transition metal oxides [8,9], hydroxides [10], sulfides [11,12], 
phosphides [13], carbides [14], selenides [15], and nitrides [16] have 
been proposed as alternatives. 

Two-dimensional layered molybdenum chalcogenides are promising 
electrocatalysts for HER due to their favorable hydrogen adsorption-free 

energy (ΔGH) and tunable active center [17,18]. However, owing to the 
large number of inert basal sites on the surface [19], heterostructure 
engineering has emerged as a rational strategy to optimize the electronic 
structure of the surface sites to promote HER activity [20,21]. For 
instance, Tian et al. have prepared a three-dimensional MoSe2@Ni0.85Se 
nanowire network for alkaline HER [22], Zhang et al. have anchored 1T- 
MoSe2 nanosheets on NiSe nanowires to produce the 1T-MoSe2/NiSe 
heterostructure with attractive electrocatalytic properties [23], and Ren 
et al. have prepared a heterostructure consisting of molybdenum sulf-
soselenide particles on nickel selenide foam which only requires an 
overpotential of − 69 mV for a current density of 10 mA cm− 2 with a 
small Tafel slope of 42.1 mV dec− 1 for acidic HER by taking advantage of 
the interactions between the Ni- and Mo-based components in the het-
erostructure [24]. 

In addition to the interactions between Ni and Mo to activate the 
inert sites on the surface, the oxidation state of these atoms plays a 
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significant role in HER. For example, Ni2+ has been identified to be a 
suitable candidate for high-performance HER [25]. Zhan et al. [26] have 
manipulated the phase composition and charge state of the Ni species 
and found that a lower Ni charge state improves the HER activity. 
However, how to synergistically integrate the effects of the electronic 
interactions between Ni and Mo and tuning of the oxidation states has 
not been extensively studied because the task is quite challenging. 

Herein, a hydrothermal selenation technique is designed to regulate 
the electronic structure of NiMo selenides composite nanosheets and 

simultaneously modulate the oxidation states by programmed reduc-
tion, as illustrated in Scheme 1. The electronic interactions between Ni 
and Mo produced by in situ phase separation and pertaining mechanism 
are investigated. The NiMo selenides composite electrocatalyst requires 
a mere overpotential of 124 mV to achieve a current density of 10 mA 
cm− 2. The Tafel slope and Faradaic efficiency for hydrogen production 
are 63 mV dec− 1 and 98.9 %, respectively. The materials also have 
robust stability that is corroborated by continuous operation for 170 h. 
Our results reveal a valuable strategy to design and fabricate non- 

Scheme 1. Schematic illustration of the preparation of NiMo selenides (NMS) composite and the application for HER.  
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precious transition metal-based electrocatalysts for efficient alkaline 
HER. 

2. Experiment details 

2.1. Materials preparation 

9 mmol nickel chloride (NiCl2⋅6H2O), 9 mmol sodium molybdate 
(Na2MoO4⋅2H2O), and 30 mmol NH4F were dissolved in 150 mL of 
deionized water (DW) and 150 mL ethanol under stirring. It was trans-
ferred to a 500 mL autoclave and heated to 160 ◦C for 4 h, followed by 
washing with DW three times and freeze-drying for more than 48 h. The 
NiMoO4 nanosheets were obtained by calcining the sample at 450 ◦C for 
1 h at a ramping rate of 2 ◦C min− 1 in a nitrogen atmosphere. 

NMS composite was synthesized by a hydrothermal reaction with Se 
powder as the precursor. The 0.500 mmol Se powder was dissolved in 1 
mL of N2H4⋅H2O, stirred for 30 min, and aged for 24 h. The Se-N2H4⋅H2O 
solution, 0.125–0.500 mmol NiMoO4, and 20 mmol NH4F were added to 
30 mL of DW and stirred for another 30 min. The mixture was then 
transferred to a 50 mL Teflon-lined stainless-steel autoclave and kept at 
180 ◦C for 12 h. The product was collected, washed with DW several 
times, and freeze-dried. The samples prepared with 0.125, 0.250, 0.375, 
and 0.500 mmol NiMoO4 were designated as NMS-1, NMS-2, NMS-3, 
and NMS-4, respectively. To synthesize the pure MoSe2 (MS) and 
Ni0.85Se (NS), the same protocols used for NMS-3 were adopted but 
without the nickel or molybdenum source in the initial hydrothermal 
reaction. 

2.2. Materials characterization 

The morphology of the samples was examined by scanning electron 
microscopy (SEM, Hitachi SU 3500) and transmission electron micro-
scopy (TEM, Titan G260-300) equipped with energy-dispersive X-ray 

spectrometry (EDS). The crystal structure and composition were char-
acterized by X-ray diffraction (XRD, LabX XRD-6100, Shimadzu), high- 
resolution TEM (HR-TEM), Raman scattering (HR RamLab), and X-ray 
photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha, Thermo 
Fisher) using a monochromatic Al Kα X-ray source. 

2.3. Electrochemical measurements 

The working electrode was a modified glassy carbon electrode (GCE, 
3 mm in diameter) loaded with the as-prepared samples. 20 mg of the 
electrocatalyst was dispersed in 5 mL DW ultrasonically to form the ink 
and 2 μL of the ink was drop-casted on a clean GCE and dried. The Nafion 
solution (5 wt%, 5 μL) was used to cover the GCE. The electrochemical 
measurements were performed on a CHI 660E electrochemical work-
station using a standard three-electrode system in a 1.0 M KOH aqueous 
solution. The Hg/HgO electrode was the reference electrode and the 
graphite rod served as the counter electrode. All the potentials were iR 
corrected and calibrated to the reversible hydrogen electrode (RHE) 
according to the Nernst equation: ERHE = EHg/HgO + 0.098 + 0.059 × pH, 
where the pH of the 1.0 M KOH aqueous solution was measured to be 
13.63 by a pH meter (FE28, Mettler Toledo). Linear sweep voltammetry 
(LSV) was conducted at a scanning rate of 5 mV s− 1. The Tafel slopes 
were obtained by plotting the overpotentials (η) vs. log currents (log |j|) 
derived from the polarization curves. The electrochemically active sur-
face areas (ECSA) were determined by measuring the electrochemical 
double-layer capacitance (Cdl) of the electrocatalysts based on the cyclic 
voltammetry (CV) curves in the potential range from − 0.4 to − 0.5 V vs. 
Hg/HgO electrode at different scanning rates of 10–100 mV s− 1. Elec-
trochemical impedance spectroscopy (EIS) was carried out at an initial 
potential of − 0.22 V vs. RHE and the stability was assessed by the 
chronoamperometric method at a constant potential. 

Fig. 1. SEM images of (a) NiMoO4⋅xH2O, (b) NiMoO4, and (c) NMS-3; (d) TEM image, (e) HR-TEM image, and (f) Lattice image of NMS-3; (g-j) Elemental maps of 
NMS-3; (k) XRD patterns and (l) Raman scattering spectra of (1) NMS-1, (2) NMS-2, (3) NMS-3, and (4) NMS-4. 
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3. Results and discussion 

3.1. Structure of the electrocatalysts 

Scheme 1 illustrates the preparation of NMS composite nanosheets 
by a two-step hydrothermal process and HER application. After pre-
paring the NiMoO4⋅xH2O precursor by the first hydrothermal reaction, 
the sample is annealed to remove water and stabilize the structure to 
produce NiMoO4. Afterwards, a second hydrothermal process using Se 
powders as a source is performed to convert NiMoO4 into selenide, 
during which phase separation occurs to produce the NMS composite. As 
a result of the interactions between the phases and the electron transfer 
effect of Ni and Mo atoms, the electronic configuration of the surface 
sites is modulated and at the same time, the hydrogen adsorption 
behavior which impacts the HER activity is altered. 

The SEM image in Fig. 1a shows the hierarchical NiMoO4⋅xH2O 
precursor consisting of uniform nanosheets. After annealing at 450 ◦C to 
remove water, the nanosheet structure is retained for the NiMoO4, as 
indicated by the SEM image in Fig. 1b. Because of the unstable structure 
of the NiMoO4⋅xH2O precursor in alkaline media, it is necessary to 
anneal the NiMoO4⋅xH2O to enhance its structure stability before further 
hydrothermal for selenation [27,28]. After the ensuing hydrothermal 
reaction at 180 ◦C for 12 h, the hierarchical sphere assembled of 
nanosheet structure is preserved as shown in Fig. 1c. The morphology of 
the samples with different (NiMo)/Se ratios used in hydrothermal 
selenation is shown in Figure S1. The surface of NMS-1 and NMS-2 was 
covered by particles, which may be the excess Se since the ratio of 
NiMoO4:Se precursors is small in these samples. The open structure 
between the nanosheets in the sphere provides a large surface area for 
exposure to the active site and also allows electrolytes to enter the 
interior [29–32]. 

The TEM image in Fig. 1d confirms the nanosheet structure. The HR- 
TEM image in Fig. 1e-f discloses interplanar distances of 0.27 and 0.65 
nm ascribed to the (101) planes of Ni0.85Se and (002) planes of MoSe2, 
respectively. Atomic distortion is observed from the interface of the 
Ni0.85Se and MoSe2 phases as indicated by the dotted line, possibly 
resulting in the electronic structure modulation [33,34]. The elemental 
maps in Fig. 1g-j reveal uniform distributions of the Mo, Se, and Ni. 

The crystal structure and phase composition of the samples are 

examined by XRD and Raman scattering. The XRD pattern of the initial 
hydrothermal product in Figure S2 matches that of NiMoO4⋅xH2O 
(JCPDS card No. 13-0128) consistent with a previous report [35]. After 
annealing at 450 ◦C, the NiMoO4⋅xH2O precursor is converted into 
NiMoO4 (JCPDS card No. 45-0142) that the peaks at 23.3◦, 26.5◦, 28.4◦, 
27.1◦, 46.6◦, and 43.7◦ are associated with the (021), (220), (311), 
(112), (422), and (241) planes of monoclinic NiMoO4 (Figure S3). 
After the second hydrothermal selenation reaction (Fig. 1k), the 
diffraction peaks observed from the NMS samples at 33.1◦, 44.9◦, 50.4◦, 
60.2◦, 61.7◦, and 69.6◦ arise from the (101), (102), (110), (103), 
(201), and (202) planes of Ni0.85Se (JCPDS card No. 18-0888). The XRD 
patterns of the pure-phase samples in Figure S4 suggest the presence of 
pure Ni0.85Se (JCPDS card No. 18-0888) and MoSe2 (JCPDS card No. 29- 
0914), respectively. 

The Raman scattering spectrum of NiMoO4 in Figure S5 exhibits 
peaks at 952, 905, 819, 704, and 384 cm− 1 corresponding to vibrations 
of NiMoO4 [36]. After hydrothermal selenation, distinct Raman peaks 
emerge at ~235 and ~282 cm− 1 attributable to the A1g and E1

2g vibra-
tion modes of MoSe2 (Fig. 1l and S6), thus corroborating the formation 
of MoSe2 in the products [37]. The peak at around 200 cm− 1 is assigned 
to Ni-Se vibration (Fig. 1l) [38,39] and the two peaks in Figures S6 and 
1l at 336 and 379 cm− 1 stem from Mo–O and Mo––O bending [40]. The 
Raman scattering spectrum of the pure phase of Ni0.85Se in Figure S7 
shows two weak and broad peaks at 192 cm− 1 and 521 cm− 1, corre-
sponding to Ni-Se stretching [38,39]. Raman scattering confirms the 
presence of MoSe2 and Ni0.85Se in the NMS composite. 

Figure S8a presents the XPS survey spectrum of NiMoO4 showing 
the existence of Ni, O, and Mo. The Ni-2p spectrum can be divided into 
four peaks (Figure S8b) with the peaks at 856.3 and 874.0 eV corre-
sponding to Ni-2p3/2 and Ni-2p1/2 of Ni2+ and those at 862.0 and 879.7 
eV being the satellite signals. The Mo-3d spectrum shows peaks at 232.1 
and 235.2 eV for Mo-3d5/2 and Mo-3d3/2 of Mo6+ (Figure S8c) [41]. 

The survey spectra of all the NMS composites in Figure S9 show the 
Ni-2p, Mo-3d, Se-3d, and O-1s peaks. The O-1s signal may result from 
slight surface oxidation which has been observed independently 
[42,43]. The chemical states of Ni and Mo in the NMS composites are 
shown in Fig. 2a-b. The Ni-2p spectra can be deconvoluted into two 
doublets (2p3/2 and 2p1/2) together with two shake-up satellite peaks 
due to the spin–orbit coupling effect [44]. Specifically, the 2p3/2 peak 

Fig. 2. High-resolution XPS spectra of (a) Ni-2p and (b) Mo-3d; (c) Calculated ratios of Ni2+ / (Ni2+ + Ni3+) and Mo4+ / (Mo4+ + Mo6+) of the NMS composites.  
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can be further divided into two subpeaks at 853.9 and 856.3 eV for Ni2+

and Ni3+ [45,46]. Similarly, the 2p1/2 peak can be resolved into two 
peaks of 871.5 and 873.9 eV for Ni2+ and Ni3+, respectively [45,46]. As 
shown in Fig. 2b, the Mo-3d spectrum shows five peaks, among which 
those at 232.8 and 235.6 eV belong to Mo-3d5/2 and Mo-3d3/2 of Mo6+, 
those at 228.6 and 231.6 eV belong to Mo-3d5/2 and Mo-3d3/2 of Mo4+

[37,47], and that at 229.4 eV is Se-3s, consistent with the literature [48]. 
In addition, the high-resolution XPS Se-3d spectra of composites are 
shown in Figure S10. The peaks at 54.7 and 55.7 eV corresponded to Se- 
3d5/2 and Se-3d3/2, respectively, confirming the presence of Se2− [49]. 
As is shown in Figure S11, the high-resolution XPS O-1s spectra of NMS- 
x showed two distinct peaks located at 531.4 and 532.8 eV, corre-
sponding to the oxygen in metal oxide species (M− O) and surface- 
adsorbed O species (Oad), respectively [50,51]. 

Compared to the Ni-2p and Mo-3d spectra of pure Ni0.85Se and MoSe2 
in Fig. 2a-b, the binding energies of both Ni2+ and Ni3+ in the NMS 
composites shift to higher binding energies by 0.7 eV, whereas the peaks 
of Mo-3d of Mo4+ in the NMS composites shift to lower binding energies 
by 0.4 eV, implying electron transfer from Ni to Mo in the composite 
phases [42,52,53]. The electronic interaction between the Ni and Mo 
atoms modulates the hydrogen adsorption behavior of the active sites. 
Especially, the Mo sites with rich electrons have superior reduction 
properties. Furthermore, as the (NiMo)/Se ratio of the NMS composites 
decreases, the Ni2+/(Ni2+ + Ni3+) and Mo4+/(Mo4+ + Mo6+) ratios 
increase as indicated in Fig. 2c. Generally, the ionic Ni and Mo are 
reduced by the Se-N2H4 reducing agent. The smaller the (NiMo)/Se 
ratio, the larger the Se-N2H4 precursor content. Therefore, more Se- 
N2H4 in the precursor reduces Ni and Mo to lower valences, indicating 
the selective reduction of the NiMo species. The results suggest that the 
chemical states of Ni and Mo can be regulated by adjusting the (NiMo)/ 
Se ratio of the precursor. Normally, the Ni-based electrocatalyst with a 
lower Ni oxidation state facilitates HER [25,26] and hence, this dual 
regulation strategy encompassing the electronic structure interaction 
between Ni and Mo atoms at the interface and selective reduction of the 
NiMo species to alter the oxidation states optimizes the electronic 
configuration of the active sites to foster the HER activity. 

3.2. HER performance 

The NMS composite-modified GCE is used as the working electrode 
to evaluate the HER performance in the 1.0 M KOH aqueous solution. 
Fig. 3a shows the polarization curves and enhanced HER activity of the 
NMS composites compared to the pure MoSe2 and Ni0.85Se. For example, 
NMS-3 requires an overpotential of 124 mV to achieve a current density 
of 10 mA cm− 2, which is smaller than those of NMS-1 (178 mV), NMS-2 
(152 mV), NMS-4 (249 mV), NS (377 mV), and MS (318 mV). Fig. 3b 
shows that the Tafel slope of NMS-3 (63 mV dec− 1) is smaller than those 
of NMS-2 (75 mV dec− 1), NMS-1 (102 mV dec− 1), NMS-4 (130 mV 
dec− 1), MS (174 mV dec− 1), and NS (175 mV dec− 1), suggesting faster 
kinetics for NMS-3. Fig. 3c illustrates the overpotentials to produce a 
current density of 10 mA cm− 2 and Tafel slopes confirming the superi-
ority of NMS-3 as a HER electrocatalyst. The high HER activity of NMS-3 
results from the optimized electronic structure and balanced hydrogen 
adsorption capability at the active sites, which are achieved by oxidation 
states tuning and exploiting the electronic interaction between Ni and 
Mo at the NiMo selenides composite interface [26]. 

The HER activity depends on the ECSA, which is reflected by the Cdl 
derived from the cyclic voltammetry curves in the non-Faraday region, 
as shown in Figure S12. Fig. 3d shows that the Cdl of NMS-3 is 33 mF 
cm− 2, which is 1.4 times, 1.8 times, 4.7 times, 11 times, and 33 times 
larger than those of NMS-2 (23 mF cm− 2), NMS-1 (18 mF cm− 2), NMS-4 
(7 mF cm− 2), MS (3 mF cm− 2), and NS (1 mF cm− 2), respectively. The 
largest ECSA of NMS-3 should result from the optimal balance of surface 
morphology with large abundant active site exposure and highly 
intrinsic catalytic activity of the active Ni2+ and Mo4+ sites compared to 
the others. Generally, a larger Cdl implies more electrochemically active 
site exposure. The electronic interactions between Ni and Mo atoms tune 
the electronic configuration of the active sites, and Ni2+ has been re-
ported to enhance HER activity [26]. Therefore, the larger ECSA of NMS- 
3 stems from the synergistic dual-regulation effects of electronic in-
teractions and oxidation states of Ni and Mo, leading to the activation of 
more surface sites. The turnover frequency (TOF) is studied to evaluate 
the intrinsic electrocatalytic capability of the NMS composites 

Fig. 3. HER properties of (1) NMS-1, (2) NMS-2, (3) NMS-3, (4) NMS-4, (5) MS, and (6) NS modified GCE in 1.0 M KOH: (a) Polarization curves; (b) Tafel plots; (c) 
Summary of the overpotentials at 10 mA cm− 2 (pink) and Tafel slopes (purple); (d) Double-layer capacitance (Cdl) plots; (e) Nyquist plots; (f) Comparison of the HER 
characteristics with those of recently reported electrocatalysts including (1) Ni/MoxC [54], (2–3) NiS and NiS2 [45], (4) EG/Co0.85Se/NiFe-LDH [55], (5) MoSexS2-x 
[56], (6–9) Ni0.9Fe0.1/NC, Ni0.8Fe0.2/NC, Ni0.7Fe0.3/NC, and Ni0.6Fe0.4/NC [57], (10) NiSe2/CC-180 [46], (11) NiS2/MoS2 HNW [58], (12) 2D-MoS2/Co(OH)2 [59], 
(13) Co/M− MoS2 [60], (14) Co-1T-MoS2 [61], (15) Ni-Mo co-doped WSe2 [62], (16) NiMOF-derived MoSe2@NiSe2 [63], (17) NiCo-WSe2 [64], (18) NiMoSe/NF-1 
[65], and (19) Mo,S-co-doped NiSe/NF [66]. 
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(Supporting note I). The NMS-3 shows a TOF of 1.0 s− 1 at an over-
potential of 137 mV, which is larger than that of the other electro-
catalysts, confirming the excellent intrinsic electrocatalytic activity 
(Figure S13). 

The charge transfer resistance (Rct) of the electrocatalysts in HER is 
determined by EIS, as shown in Fig. 3e. NMS-3 has a smaller Rct than 
NMS-1, NMS-2, and NMS-4, reflecting faster HER kinetics. The com-
parison of the hydrogen evolution characteristics of the NMS composite 
electrocatalyst in this work and other non-precious transition metal- 
based electrocatalysts at 10 mA cm− 2 is shown in Fig. 3f and listed in 
Table S1, suggesting that the NMS/CC is superior to those of the typical 
transition metal-based sulfides and selenides. 

Stability is an important parameter in commercial applications. The 
durability of NMS-3 is evaluated by chronoamperometry at a potential 
of − 0.15 V vs. RHE, as shown in Fig. 4a. Negligible changes are observed 
from the current densities after continuous operation for 170 h. Addi-
tionally, only a 14 mV shift in the potential is observed from the LSV 
curve at a current density of 10 mA cm− 2 after the long-term test in 
comparison with the initial LSV curve (Fig. 4b), indicating that NMS-3 is 
extremely stable in alkaline HER. The composition and morphology of 
NMS-3 after the long-term test are investigated. Fig. 4c reveals diffrac-
tion peaks from Ni0.85Se (JCPDS card No. 18–0888) matching the pris-
tine sample. The hierarchical structure composed of nanosheets is also 

preserved as shown by Fig. 4d. The XPS survey in Figure S14 discloses 
the presence of Ni and Mo. High-resolution XPS Ni-2p and Mo-3d spectra 
in Fig. 4e show similar peaks as the original sample. The ratios of Ni2+ / 
(Ni2+ + Ni3+) and Mo4+ / (Mo4+ + Mo6+) are calculated to be 0.31 and 
0.47, respectively, which are very close to those of the fresh sample of 
0.32 and 0.46. In addition, there are no differences in the binding energy 
of both Ni and Mo elements before and after the long-term test. The 
results provide strong evidence of the excellent durability of NMS-3 in 
alkaline HER. 

The Faradaic efficiency of NMS-3 in HER is determined by the water 
displacement method illustrated in Fig. 5a by collecting H2 from the 
working electrode and O2 from the counter electrode using cylinders in a 
three-electrode system with a graphite rod as counter electrode, NMS-3 
as working electrode, and Hg/HgO as reference electrode. Fig. 5b shows 
that 18 mL of H2 and 9 mL of O2 are generated in 80 min at a current of 
30 mA. The Faradaic efficiency is calculated to be 98.9 % which is close 
to the limit of 100 %. 

4. Conclusions 

NiMo selenides composite heterostructure composites are synthe-
sized by a dual-regulation strategy. The electronic structure of Ni and 
Mo on the surface is modulated by the electronic interactions between 

Fig. 4. (a) Stability test; (b) Polarization curves of NMS-3 before and after the long-term test; (c) XRD, (d) SEM image, and (e) High-resolution XPS Ni-2p and Mo-3d 
spectra of NMS-3 after the long-term test. 

Fig. 5. (a) Photograph of the collection and volume determination apparatus for H2 and O2 by the water displacement method; (b) Experimental and theoretical 
amounts of H2 and O2 produced by NMS-3 at a current of 30 mA in 1.0 M KOH. 
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Ni and Mo, where electrons are transferred from Ni to Mo at the het-
erointerface due to the in-situ phase separation of Ni0.85Se and MoSe2. 
Furthermore, the oxidation states of Ni and Mo are altered by selective 
reduction using a programmed hydrothermal selenation process, which 
optimizes the amount of highly active Ni2+ species in the electrocatalyst. 
The dual-regulation strategy produces outstanding HER properties such 
as an overpotential of 124 mV for a current density of 10 mA cm− 2, a 
small Tafel slope of 63 mV dec− 1, robust stability for 170 h, and high 
Faradaic efficiency of 98.9 % in hydrogen production. This dual- 
regulation technique can be extended to the design and fabrication of 
other types of low-cost transition metal-based heterostructured elec-
trocatalysts for various applications. 
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Supplementary note I: TOF calculation 

TOF values are calculated according to the method reported by the Jaramillo group [1].  

The detailed calculation is shown as follows: 

To calculate the per-site TOF, we use the following formula: 

𝑇𝑂𝐹 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑠/𝑐𝑚2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑜𝑓 𝑠𝑖𝑡𝑒𝑠/𝑐𝑚2
 

The total number of hydrogen turnovers is calculated from the current density: 

𝑁𝑜. 𝑜𝑓 𝐻2

= (𝑗
𝑚𝐴

𝑐𝑚2
) (

1 𝐶 𝑠−1

1000 𝑚𝐴
) (

1 𝑚𝑜𝑙 𝑒−1

96485.3 𝐶
) (

1 𝑚𝑜𝑙 𝐻2

2 𝑚𝑜𝑙 𝑒−1
) (

6.022 × 1023𝐻2 𝑚𝑢𝑙𝑒𝑐𝑢𝑙𝑒𝑠

1 𝑚𝑜𝑙 𝐻2
)

= 3.12 × 1015
𝐻2 𝑠−1

𝑐𝑚2
𝑝𝑒𝑟

𝑚𝐴

𝑐𝑚2
 

The active sites per real surface area are calculated from the following formula: 

𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 = (
𝑁𝑜. 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

𝑉𝑜𝑙𝑢𝑛𝑚𝑒/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2

3

 

The calculation of the number of active sites of NMS-x should follow the formula: 

𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 × 𝐸𝐶𝑆𝐴

= (
𝑁𝑜. 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

𝑉𝑜𝑙𝑢𝑚𝑒/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 
)

2

3

× 𝑥 × 𝐸𝐶𝑆𝐴

+ (
𝑁𝑜. 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

𝑉𝑜𝑙𝑢𝑚𝑒/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 
)

2

3

× 𝑦 × 𝐸𝐶𝑆𝐴 

 

For MoSe2: 

𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 = (
𝑁𝑜. 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

𝑉𝑜𝑙𝑢𝑛𝑚𝑒/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2

3
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𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 = (
3 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

120.94 Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2

3

 

No. of active sites = 8.5 × 1014 atoms cm−2 

𝐸𝐶𝑆𝐴 =
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 (𝜇𝐹 𝑐𝑚−2)

40 𝜇𝐹 𝑐𝑚−2 𝑝𝑒𝑟 𝑐𝑚𝐸𝐶𝑆𝐴
2 = 𝐴𝑔𝑒𝑜 ×

3000 (𝜇𝐹 𝑐𝑚−2)

40 𝜇𝐹 𝑐𝑚−2 
 

𝑇𝑂𝐹 =
(3.12 × 1015 𝐻2 𝑠−1

𝑐𝑚2 𝑝𝑒𝑟
𝑚𝐴

𝑐𝑚2) × |𝑗|

𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 × 𝐸𝐶𝑆𝐴
 

 

For NMS-1: 

𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 = (
𝑁𝑜. 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

𝑉𝑜𝑙𝑢𝑛𝑚𝑒/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2

3

 

𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 (MoSe2) = (
3 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

120.94 Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2

3

 

No. of active sites (MoSe2) = 8.5 ×1014 atoms cm−2 

𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 (Ni0.85Se) = (
37 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

60.14 × 20 Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2

3

 

No. of active sites (Ni0.85Se) = 9.8 × 1014atoms cm−2 

𝐸𝐶𝑆𝐴 =
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 (𝜇𝐹 𝑐𝑚−2)

40 𝜇𝐹 𝑐𝑚−2 𝑝𝑒𝑟 𝑐𝑚𝐸𝐶𝑆𝐴
2 = 𝐴𝑔𝑒𝑜 ×

31500 (𝜇𝐹 𝑐𝑚−2)

40 𝜇𝐹 𝑐𝑚−2 
 

𝑇𝑂𝐹

=
(3.12 × 1015 𝐻2 𝑠−1

𝑐𝑚2
𝑝𝑒𝑟

𝑚𝐴

𝑐𝑚2
) × |𝑗|

𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 (𝑀𝑜𝑆𝑒2) × 𝑥 × 𝐸𝐶𝑆𝐴 + 𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 (Ni0.85Se) × 𝑦 × 𝐸𝐶𝑆𝐴
 

Where x = 50% and y = 50%. 

 

For NMS-2: 
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𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 = (
𝑁𝑜. 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

𝑉𝑜𝑙𝑢𝑛𝑚𝑒/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2

3

 

𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 (MoSe2) = (
3 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

120.94 Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2

3

 

No. of active sites (MoSe2) = 8.5 ×1014 atoms cm−2 

𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 (Ni0.85Se) = (
37 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

60.14 × 20 Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2

3

 

No. of active sites (Ni0.85Se) = 9.8 × 1014atoms cm−2 

𝐸𝐶𝑆𝐴 =
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 (𝜇𝐹 𝑐𝑚−2)

40 𝜇𝐹 𝑐𝑚−2 𝑝𝑒𝑟 𝑐𝑚𝐸𝐶𝑆𝐴
2 = 𝐴𝑔𝑒𝑜 ×

40250 (𝜇𝐹 𝑐𝑚−2)

40 𝜇𝐹 𝑐𝑚−2
 

𝑇𝑂𝐹 

=
(3.12 × 1015 𝐻2 𝑠−1

𝑐𝑚2 𝑝𝑒𝑟
𝑚𝐴

𝑐𝑚2) × |𝑗|

𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 (𝑀𝑜𝑆𝑒2) × 𝑥 × 𝐸𝐶𝑆𝐴 + 𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 (Ni0.85Se) × 𝑦 × 𝐸𝐶𝑆𝐴
 

Where x = 50% and y = 50%. 

 

For NMS-3: 

𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 = (
𝑁𝑜. 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

𝑉𝑜𝑙𝑢𝑛𝑚𝑒/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2

3

 

𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 (MoSe2) = (
3 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

120.94 Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2

3

 

No. of active sites (MoSe2) = 8.5 ×1014 atoms cm−2 

𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 (Ni0.85Se) = (
37 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

60.14 × 20 Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2

3

 

 

No. of active sites (Ni0.85Se) = 9.8 × 1014atoms cm−2 
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𝐸𝐶𝑆𝐴 =
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 (𝜇𝐹 𝑐𝑚−2)

40 𝜇𝐹 𝑐𝑚−2 𝑝𝑒𝑟 𝑐𝑚𝐸𝐶𝑆𝐴
2 = 𝐴𝑔𝑒𝑜 ×

577500 (𝜇𝐹 𝑐𝑚−2)

40 𝜇𝐹 𝑐𝑚−2 
 

𝑇𝑂𝐹

=
(3.12 × 1015 𝐻2 𝑠−1

𝑐𝑚2 𝑝𝑒𝑟
𝑚𝐴

𝑐𝑚2) × |𝑗|

𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 (𝑀𝑜𝑆𝑒2) × 𝑥 × 𝐸𝐶𝑆𝐴 + 𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 (Ni0.85Se) × 𝑦 × 𝐸𝐶𝑆𝐴
 

Where x = 50% and y = 50%. 

 

For NMS-4: 

𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 = (
𝑁𝑜. 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

𝑉𝑜𝑙𝑢𝑛𝑚𝑒/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2

3

 

𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 (MoSe2) = (
3 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

120.94 Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2

3

 

No. of active sites (MoSe2) = 8.5 ×1014 atoms cm−2 

𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 (Ni0.85Se) = (
37 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

60.14 × 20 Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2

3

 

No. of active sites (Ni0.85Se) = 9.8 × 1014atoms cm−2 

𝐸𝐶𝑆𝐴 =
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 (𝜇𝐹 𝑐𝑚−2)

40 𝜇𝐹 𝑐𝑚−2 𝑝𝑒𝑟 𝑐𝑚𝐸𝐶𝑆𝐴
2 = 𝐴𝑔𝑒𝑜 ×

122500 (𝜇𝐹 𝑐𝑚−2)

40 𝜇𝐹 𝑐𝑚−2 
 

𝑇𝑂𝐹

=
(3.12 × 1015 𝐻2 𝑠−1

𝑐𝑚2 𝑝𝑒𝑟
𝑚𝐴

𝑐𝑚2) × |𝑗|

𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 (𝑀𝑜𝑆𝑒2) × 𝑥 × 𝐸𝐶𝑆𝐴 + 𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 (Ni0.85Se) × 𝑦 × 𝐸𝐶𝑆𝐴
 

Where x = 50% and y = 50%. 

 

For Ni0.85Se: 



6 

𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 = (
𝑁𝑜. 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

𝑉𝑜𝑙𝑢𝑛𝑚𝑒/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2

3

 

𝑁𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 (Ni0.85Se) = (
37 𝑎𝑡𝑜𝑚𝑠/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

60.14 × 20 Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2

3

 

No. of active sites = 8.5 × 1014 atoms cm−2 

𝐸𝐶𝑆𝐴 =
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 (𝜇𝐹 𝑐𝑚−2)

40 𝜇𝐹 𝑐𝑚−2 𝑝𝑒𝑟 𝑐𝑚𝐸𝐶𝑆𝐴
2 = 𝐴𝑔𝑒𝑜 ×

1000 (𝜇𝐹 𝑐𝑚−2)

40 𝜇𝐹 𝑐𝑚−2 
 

𝑇𝑂𝐹 =
(3.12 × 1015 𝐻2 𝑠−1

𝑐𝑚2 𝑝𝑒𝑟
𝑚𝐴

𝑐𝑚2) × |𝑗|

𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 × 𝐸𝐶𝑆𝐴
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Figure S1. SEM images: (a) NMS-1, (b) NMS-2, and (c) NMS-4. 
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Figure S2. XRD pattern of NiMoO4·xH2O. 
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Figure S3. XRD pattern of NiMoO4. 
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Figure S4. XRD patterns of the pure-phase NS and MS. 
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Figure S5. Raman scattering spectrum of NiMoO4. 
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Figure S6. Raman scattering spectrum of MS. 
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Figure S7. Raman scattering spectrum of NS. 
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Figure S8. XPS spectra of the NiMoO4: (a) Survey, (b) Ni-2p, and (c) Mo-3d. 
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Figure S9. XPS survey spectra of NMS-1, NMS-2, NMS-3, and NMS-4. 
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Figure S10. XPS spectra of Se-3d. 
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Figure S11. High-resolution XPS O-1s spectra of NMS-x. 
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Figure S12. Cyclic voltammetry (CV) curves of (a) NMS-1, (b) NMS-2, (c) NMS-3, (d) 

NMS-4, (e) NS, and (f) MS acquired at scanning rates between 10 and 100 mV s−1. 
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Table S1. Comparison of the HER characteristics of different electrocatalysts. 

Catalysts 
η10 

(mV) 

Tafel slope 

(mV dec-1) 
Refs. 

Ni/MoxC 161 104 [2] 

NiS 220 145 [3] 

NiS2 147 105 [3] 

EG/Co0.85Se/NiFe-LDH 260 160 [4] 

MoSexS2-x 248 123 [5] 

Ni0.9Fe0.1/NC 231 111 [6] 

Ni0.8Fe0.2/NC 253 110 [6] 

Ni0.7Fe0.3/NC 297 119 [6] 

Ni0.6Fe0.4/NC 337 110 [6] 

NiSe2/CC-180 133 128 [7] 

NiS2/MoS2 HNW 204 65 [8] 

2D-MoS2/Co(OH)2 128 76 [9] 

Co/M-MoS2 165 124 [10] 

Co-1T-MoS 240 68 [11] 

Ni-Mo co-doped WSe2 188 122 [12] 

NiMOF-MoSe2@NiSe2 187 71 [13] 

NiCo-WSe2 205 118 [14] 

NiMoSe/NF-1 91 48 [15] 

Mo,S-codoped NiSe/NF 88 82 [16] 
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Figure S13. TOF of (1) NMS-1, (2) NMS-2, (3) NMS-3, (4) NMS-4, (5) MS, and (6) NS 

modified GCE in 1.0 M KOH. 
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Figure S14. XPS survey spectrum of NMS-3 after the long-term test. 
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