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A B S T R A C T   

Colorimetric determination of trace mercury ions (Hg2+) with high reproducibility and sensitivity is urgently 
required for water safety and environmental monitoring. Herein, an automated robotic platform is described for 
high-throughput and controllable synthesis of colloidal silver nanocrystals (Ag NCs) and sensitive/selective 
colorimetric determination of Hg2+ in aqueous solutions. The predicted models of optical simulation are con-
structed as data-driven models to evaluate the quality of Ag NCs synthesized by a wet-chemical method. Based on 
an experimental database derived by optical characterization, the machine-learning (ML) model which covers 
multiple synthesis parameters is established for uniform synthesis of Ag NCs with controllable sizes matching the 
classical growth model. Moreover, the database of more than 1,200 valid samples established for the optical 
properties of Ag NCs is digitized to correlate with their average size. Optimized manual re-synthesis of high- 
quality Ag NCs demonstrates the practical feasibility and scalability of established models. The prepared Ag 
NCs can be used directly or modified with polymer ligands for quantitative detection of Hg2+ in the linear range 
from 0.01 to 200 µM with a detection limit of 3 nM. The strategy provides a scientific and effective way for the 
high-throughput study of nanoscale optical materials in chemical engineering and environmental monitoring.   

1. Introduction 

Mercury (Hg2+) is one of the common and toxic heavy metal ions in 
wastewater causing health hazards and environmental safety concerns 
[1–3]. The safety level of Hg2+ in drinking water is 10 nM as stipulated 
by the U.S. Environmental Protection Agency [4,5], and sensitive and 
accurate detection of Hg2+ in aqueous media is thus imperative. 
Compared to common analytical techniques such as atomic adsorption 
spectroscopy (AAS), atomic fluorescence spectroscopy (AFS), and 
inductively-coupled plasma emission spectroscopy (ICP-ES) [6–8], 
colorimetric determination of Hg2+ based on surface plasmon resonance 
(SPR) offers advantages such as low cost and simple operation [3,9,10]. 
However, plasmonic nanomaterials for colorimetric detection usually 
have poor reproducibility and low sensitivity because of the uniform 
optical phenomenon and therefore, it is crucial to develop a technique 

capable of controllable synthesis of stable nanomaterials with high SPR 
efficiency for colorimetric determination of Hg2+. 

Silver nanocrystals (Ag NCs) are desirable optical sensing materials 
due to their excellent SPR efficiency [11,12] and efforts have been made 
for controllable synthesis of stable Ag NCs with tailored optical prop-
erties by wet-chemical methods [13–17]. However, the number of valid 
samples in most databases is too small for universal application. In 
general, metal precursors, stabilizing agents, shape-control agents, 
reducing agents, and other supplementary agents are required for the 
wet-chemical synthesis of NCs [18–21], and their roles become very 
complex when multiple parameters must be optimized at the same time. 
Obviously, it is not scientific to simply summarize some recipes without 
a comprehensive consideration of the impact of different parameters. In 
addition, synthetic agents with low molecular weights are more favor-
able to optical sensors from the perspective of surface activity [22,23]. 
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Hence, it is necessary to develop a high-throughput technique for 
controllable synthesis encompassing multiple parameters. 

One way to realize this goal is to enhance big data acquisition and 
processing by artificial intelligence (AI) [24,25]. Recently, technological 
advances in modular robotic systems have spurred the development of 
chemical automation [26–29] as a powerful and high-throughput tool 
for screening synthetic strategies and recipes due to the high efficiency, 
less manpower, and high accuracy. Although some automated platforms 
focusing on organic synthesis in chemical engineering have been re-
ported [30–33], there have been few reports about robotic platforms 
pertaining to the synthesis and characterization of inorganic nano-
materials. Meanwhile, the lack of proper descriptors for multi-parameter 
synthesis has become a bottleneck restricting the high-throughput study 
[34,35]. Databases with complex features can be iteratively established 
with advanced machine learning (ML) algorithms [36–39] and corre-
lation analysis can be accelerated with a better understanding of the 
relationship between material properties and synthesis parameters 
[40–42]. The strategy combining automated platforms and ML algo-
rithms may pave the way for the high-throughput study of Ag NCs. 

Herein, we report a robotic platform for the high-throughput study of 
colloidal Ag NCs for Hg2+ detection (Fig. 1). Spectral analyses of 
desirable spherical Ag NCs are carried out based on optical simulation 
(Fig. 1A) and then adopted as data-driven models with ML (Fig. 1B) to 
evaluate the quality of Ag NCs synthesized by the robotic platform 
(Fig. 1C). The relationship between multiple synthesis parameters is 
explored and clarified by automated optical characterization (Fig. 1D) to 
establish robust databases with ML models for controllable synthesis and 
optical properties of Ag NCs (Fig. 1E). The practicality of established 
models is investigated by scale-up exploration and comparative manual 
synthesis (Fig. 1F). The Ag NCs are utilized as optical sensors for visual 

colorimetric detection of Hg2+ to evaluate the reproducibility and 
sensitivity (Fig. 1G). 

2. Materials and methods 

2.1. Optical simulation based on Mie theory 

The optical efficiency of Ag NCs was derived by Mie theory [43,44], 
which was widely used to simulate light scattering. Extinction effi-
ciencies of spherical Ag NCs dispersed in water at different wavelengths 
were calculated and the average diameters (D, 30–220 nm) and standard 
deviations (SD, 2–40 %) of Ag NCs with a normal distribution were set 
by statistical calculations of 50 discrete values. The refractive indexes of 
silver and water at different wavelengths were basic parameters in the 
simulation (Fig. S1, Supporting Information). The theoretical simulation 
yielded standard optical parameters (Table S1) under ideal conditions to 
guide the data screening. 

2.2. Synthesis of Ag NCs 

The Ag NCs were synthesized by the robotic platform (Fig. S2) based 
on one-pot seeded growth recipes (Table S2 to S6). Firstly, the aqueous 
solutions of silver nitrate (AgNO3), trisodium citrate (TSC), ammonia 
water (NH3⋅H2O, 0.93 %), ascorbic acid (AA), and Ag-NC seeds [45] 
(Fig. S3) were prepared manually and placed at suitable positions of the 
pipetting module for automated synthesis of Ag NCs. As an example, in 
the synthesis of 50 nm Ag NCs, the seed solution (249 µL, 4.26 × 1011 

mL− 1), AgNO3 solution (80 µL, 5 mM), TSC solution (40 µL, 5 mM), and 
NH3⋅H2O solution (180 µL, 500 mM) were pipetted successively into 
water (151 µL) in a 96-well microplate which was then placed and 

Fig. 1. Schematic illustration of the high-throughput study of Ag NCs for Hg2+ detection. (A) Optical simulation by Mie theory to predict the uniformity and 
nanoscale of spherical Ag NCs. (B) Machine learning to contrive data-driven models to evaluate the size distribution and average size of Ag NCs from spectra. (C) 
Robot-assisted synthesis of colloidal Ag NCs using the high-throughput automated platform. (D) Automated optical characterization including extinction spectra, 
high-quality digital photos, and RGB color-block photos. (E) Established database by ML model for Ag NCs including synthesis parameters and optical properties. (F) 
Optimized re-synthesis of Ag NCs beyond this platform through scale-up exploration. (G) Visual colorimetric detection of Hg2+ by Ag NCs. 
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stirred on the shaker to mix completely. The mixture on the microreactor 
was finally placed on the shaker for 20 min to complete the growth of Ag 
NCs after the last injection of AA solution (300 µL, 2 mM). The total 
volume of the final mixture was 1 mL and up to 96 experiments could be 
completed in one batch on the 96-well microreactor with automated 
pipettes. In the synthetic reaction, the mobile robot and six-axis robotic 
arm automatically transported the microplate to designated positions on 
the platform to perform predesigned operations including pipetting, 
shaking, data acquisition, storage, etc. 

2.3. Scaling up of synthesis 

The scale-up experiments were carried out by volume expansion 
based on the recipes extracted from established databases (Table S5 and 
S6). The volumes of 1 mL, 2 mL, and 5 mL were operated in microplates 
on the automated platform, while the volumes of 10 mL, 50 mL, 300 mL, 
and 1000 mL were operated in glass beakers manually not using the 
platform. For mass production of Ag NCs, the synthesis process was the 
same as mentioned above and the synthesis parameters in different 
volumes were strictly controlled in accordance with the recipes shown 
by established databases and models. 

2.4. Optical characterization 

After the synthesis, optical characterization was carried out in situ on 
the automated platform. The microplate was taken out from the shaker 
and 200 µL of the dispersion was transferred from each well to a new 
transparent microplate for colorimetric and spectroscopic analysis using 
the robotic platform. High-resolution images were acquired from the Ag- 
NC dispersions by a camera and the RGB color-block photos were con-
verted and generated from the corresponding images for digital analysis. 
UV–Vis spectrophotometry was performed on the spectrum (Thermo 
Multiskan Skyhigh) in the range between 300 nm and 1,000 nm at steps 
of 1 nm. The key information was extracted from extinction spectra and 
RGB photos. 

2.5. Visual detection of Hg2+

Different metal ions including Na+, K+, Li+, Mg2+, Ca2+, Zn2+, Al3+, 
Fe2+, Fe3+, Co2+, Ni2+, Ti4+, Cu2+, Cd2+, Cr3+, Mn2+, Sr2+, Zr4+, Ag+, 
Ba2+, Pb2+, Ga3+, and Hg2+ (0.2 mM) were determined by the 50 nm Ag 
NCs optically using the robotic platform. The aqueous solutions con-
taining various metal ions (100 µL) were pipetted into the aqueous so-
lution of Ag NCs (900 µL) on the microplate, placed on the shaker, and 
stirred vigorously for 5 min at room temperature. The control (blank) 
experiment was conducted with deionized water. The color change and 
extinction spectra of aqueous solutions were analyzed in comparison. 

To determine the concentration of Hg2+, three types of Ag NCs 
modified with TSC, polyvinyl pyrrolidone (PVP), and gelatin (GEL) li-
gands were used. A series of aqueous solutions with different standard 
concentrations of Hg2+ were prepared and determined by the afore-
mentioned method. The standard curves were obtained by plotting the 
changing ratios (ΔE/Emax) of extinction intensities with the Hg2+ con-
centrations. The relevant detection limits were calculated according to 
the equation of 3Sb/m [5,16], where Sb and m are the standard deviation 
of blank signals and the slope of fitting curves, respectively. 

The practicability pertaining to Hg2+ detection was verified with the 
aid of multiple actual samples. The real water samples were obtained 
from the Dasha River in Shenzhen and treated by a 0.22 mm membrane 
filter after physical precipitation. These real samples were spiked with 
standard concentrations of Hg2+ and then mixed with the solutions of Ag 
NCs for colorimetric analysis. As mentioned above, the real samples 
containing Hg2+ were subjected to the test, and Hg2+ concentrations 
were calculated by the changing ratios of peak intensities and estab-
lished linear curves. All tests were carried out three times to confirm the 
reproducibility. 

2.6. Machine learning 

Linear regression and logistic regression were two widely used and 
effective ML algorithms [46] for analyzing the results of optical simu-
lations, simple single-factor synthesis, and quantitative detection. These 
algorithms maintained the interpretability of original features and 
established receptive models for applications. As an advanced ML al-
gorithm, the sure independence screening and sparsifying operator 
(SISSO) was a supervised approach to identify important features in a 
given feature space [39,47], which was used to describe the nature or 
function of a complex target (herein multiple synthesis parameters and 
color GRB data). The feature space was generated iteratively by a series 
of algebraic and functional operators and over 33,000 features were 
included in our case. The challenge of determining the best sparse so-
lution was solved by SISSO which prescreened the optimized sub-space 
of the vast feature space and then determined the optimized solution. 

3. Results and discussion 

3.1. Controllable synthesis of Ag NCs 

The extinction spectra of different spherical Ag NCs dispersed in 
water are simulated theoretically (Fig. S1) and then ML-predicted 
models are implemented to evaluate the quality of Ag NCs synthesized 
by the robotic platform (Fig. 2). The use of big data analysis to determine 
optical efficiency has become popular in materials informatics [24,48]. 
The calculated extinction spectra of Ag NCs with different size distri-
butions (SD, 2–40 %) are shown in Fig. 2A and the average size of Ag 
NCs is fixed at 60 nm. The uniformity of Ag NCs is better for a smaller 
full-width at half-maxima (FWHM) of extinction peak, while the peak 
position shows no large change (Table S1). The ML-predicted model of 
the size and FWHM (R2 = 0.999, Fig. 2B) is established with logistic 
regression and further used to guide data screening in the uniform 
synthesis. The SD of Ag NCs is less than 10 % if the FWHM of extinction 
peak is less than 73 nm reflecting the production of high-quality Ag NCs. 

TSC, NH3⋅H2O, and AA are selected as stabilizing agents [18], shape- 
control agents [14], and reducing agents [15] for green synthesis 
without high polymers, respectively. The amounts of Ag precursors 
(including seeds and AgNO3) are fixed to make the average size of Ag 
NCs to be about 60 nm. High-throughput synthesis of Ag NCs (Table S2 
to S4) is carried out on the automated platform to establish the experi-
mental database. It can meet the demands of wet-chemical synthesis and 
optical characterization by incorporating various components on the 
robotic platform (Fig. S2). In the single-factor experiments (Fig. S4 and 
S5), the concentrations of different agents affect the uniformity (FWHM) 
of Ag NCs and should be adjusted. The double-factor and triple-factor 
experiments are carried out to investigate the synergies between 
various agents (Fig. S6 to S10). Accordingly, the 1D curves derived from 
single-factor experiments are extended into ML models encompassing 
2D surfaces and 3D space visually in the multiple-factor experiments. 
The interactions between multiple synthesis parameters can be observed 
intuitively and the optimal conditions are predicted to demonstrate the 
broad scope of recipes for homogeneous growth of Ag NCs (red zone in 
the model, Fig. 2C). The experimental results are in good agreement 
with the results predicted by the model (Table S7), thus demonstrating 
that the training model based on the experimental database (Fig. S11) 
can be applied to uniform and controllable synthesis of Ag NCs. More-
over, the thermo-kinetic analysis (Fig. S12 and S13) reveals that 
ammonia plays a vital role in regulating the redox potentials as well as 
growth rates. 

The calculated extinction spectra of Ag NCs with different average 
sizes (SD = 10 %) are shown in Fig. 2D. The SPR peaks redshift to a 
longer wavelength with a larger size (Table S1). Similarly, the ML- 
predicted model of the average size and dipolar peak position is estab-
lished by fitting (R2 = 0.999, Fig. 2E) to guide data screening and control 
the size of Ag NCs. Based on the optimal conditions given by the 
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synthesis model (Fig. 2C), more experiments (Table S5) are performed to 
verify the applicability of the model. In comparison, the Ag NCs syn-
thesized under different optimal conditions have almost the same opti-
cal properties (Fig. S14). These results demonstrate that the established 
model can be used to synthesize Ag layers with a uniform shape and size. 

The actual sizes obtained by the ML-predicted model (Fig. 2E) are 
fitting well with the number of additional Ag-NC seeds (Fig. 2F and 
Fig. S15) according to the classical growth model shown by equation (1) 
[14,19,49]: 

D =

[
6
π (m + Δm)/ρN

]1
3

(1)  

where D is the calculated diameter of Ag NCs, π is a constant, m is the Ag 
mass of additional seeds, Δm is the Ag mass of additional silver nitrate, ρ 
is the Ag density, N is the particle number of Ag NCs and equal to the 
particle number of additional seeds. The coefficient of determination 
(R2 greater than 0.99, Fig. S15) between the actual and calculated di-
ameters of Ag NCs is close to 1 in the training dataset, indicating that the 
actual size of Ag NCs can be precisely controlled by simply adjusting the 
number of additional Ag-NC seeds under the optimal conditions pre-
dicted by the model without secondary nucleation and Ag loss. The 
yields of Ag NCs synthesized under multi-parameter optimizations for 
homogeneous growth are above 99 %. These results demonstrate that 
the model of multiple parameters established for uniform synthesis can 
be further matched with the classical growth model to achieve the size 
control of Ag NCs. 

3.2. Optical characterization of Ag NCs 

Based on the perfect match between the synthesis model and the 
growth model discussed above, Ag NCs with different sizes but regular 

gaps are fabricated and analyzed optically using the automated platform 
(Fig. 3, Table S6). The extinction spectra of Ag NCs change with their 
average sizes in the visible and near-infrared regions (Fig. 3A), and the 
different colors are consistent with extinction spectra (inset in Fig. 3A) 
related to the different SPR effects of Ag NCs with different sizes. 

The SPR peaks in extinction spectra of Ag NCs with different sizes, 
including the dipolar mode, quadrupole mode, and octupole mode, are 
compared in Fig. 3B. Generally, the location of the dipolar SPR peak 
extends to longer wavelengths with size (Fig. 3B). For instance, when the 
size of Ag NCs goes up from 24 to 230 nm, the dipolar mode gradually 
redshifts from 400 to 852 nm (Table S8). Additionally, the symmetrical 
dipolar peaks widen due to the radiative losses with increasing sizes and 
the nonzero baselines become obvious in the near-infrared region. 
Compared to the dipole SPR peak in extinction spectra of Ag NCs 
throughout the total size range, the quadrupole SPR peak appears in the 
size range between 82 and 230 nm. Similarly, the quadrupole SPR peak 
progressively redshifts from 400 to 551 nm as the size of Ag NCs in-
creases from 82 to 230 nm. When the Ag NCs are bigger than 174 nm, 
the octopolar mode gradually evolves as the main SPR peak in extinction 
spectra and redshifts from 412 to 454 nm when the size of Ag NCs goes 
up from 174 to 230 nm. By matching the widest range of the dipole peak 
in comparison with the other higher SPR peaks, the actual size of Ag NCs 
can be determined. Fig. 3C shows the linear relationship between the 
calculated diameters based on the classical growth model (equation (1), 
Fig. S16) and the actual diameters determined from Ag NCs by the ML- 
predicted model (Fig. 2E), demonstrating that the size of Ag NCs can be 
controlled preciously and they have nearly ideal spherical optical 
properties. 

Fig. 3D shows the RGB color photo of Ag NCs with different sizes 
captured by a camera (inset in Fig. 3A). In general, the color of Ag NCs 
changes gradually from yellow to orange, purple, blue, cyan, and grey as 
their size increases. The colors can be incorporated into the empirical 

Fig. 2. High-throughput study of Ag NCs for controllable synthesis. (A) Calculated extinction spectra of 60 nm Ag NCs with different size distributions (SD, 2–40 %) 
based on Mie theory. All spectra are normalized at the highest peak. (B) ML-predicted model of the size deviation and FWHM. (C) Synthesis database using the ML 
model with multiple synthesis parameters and FWHM. (D) Calculated extinction spectra of Ag NCs with different average sizes (diameter, 30–220 nm) based on Mie 
theory. All spectra are normalized at 267 nm. (E) ML-predicted model of the average size and dipolar peak position. (F) Relationship between the diameter of Ag NCs 
and the particle number of additional seeds under different optimal conditions for homogeneous synthesis described in (C). 
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database for visual identification of the size of Ag NCs (Table S9). The 
RGB values of Ag NCs are presented in Fig. 3E for digital analysis, and 
the ML model for RGB values and average sizes is established as shown 
in Fig. 3F. The training dataset is in good agreement with the values 
predicted by the ML model (R2 greater than 0.99, Table S10 and 
Fig. S17), demonstrating that the ML model is accurate and can be used 
to guide the digital analysis of the color of Ag NCs. It is noted that the 
RGB value refers to the color brightness [50] and so the practicability of 
the established model is limited due to the fixed amount of Ag in this 
case. Nonetheless, these results indicate that the colors of Ag NCs with 
different sizes can be monitored easily on the automated platform after 
controllable synthesis and digital analysis to establish the intrinsic 
relationship between average size and optical property. 

3.3. Scaling up of Ag NCs 

On the basis of data screening and high-throughput experiments, the 
databases of Ag NCs including controllable synthesis and optical prop-
erties are visually established with ML models, which are used to opti-
mize and scale up the synthesis of Ag NCs. Specifically, the scale-up 
experiments (selecting Ag NCs with four average sizes, Fig. 4A) are 
presented by proportionally expanding the synthesis volume from 1 to 
1,000 mL based on the same recipes from established models. One can 
clearly see that the colloid colors and spectral peak positions of Ag NCs 
obtained in different volumes are almost the same (Fig. 4B). The Ag NCs 
obtained in different volumes have the same size and distribution on the 
basis of optimized re-synthesis (Fig. S18 and Table S11), revealing a 
relatively simple and effective way for mass production of Ag NCs with 
high quality. In short, more than 1,200 valid samples in the experi-
mental database have been synthesized to establish the ML models of Ag 
NCs. Taking the advantage of AI (Table S12), the robust database of 
multi-parameter controllable synthesis is better than those reported 

previously [13–15,19,20,37,45,49]. 
TEM images in Fig. 4C are acquired from Ag NCs with different sizes 

in the largest volumes (1,000 mL), and the actual sizes are 50 ± 5, 100 
± 8, 150 ± 12, and 200 ± 15 nm, respectively. The results disclose that 
all spherical Ag NCs have narrow normal distributions (SD less than 10 
%) and expected average sizes, in agreement with the spectral results 
(FWHM and peak position). Additionally, low-magnification TEM im-
ages are also shown in Fig. S19, indicating the high yields of Ag NCs with 
uniform size distribution and ideal spherical morphology. The average 
sizes and optical properties of Ag NCs are consistent with the simulated 
results consequently validating the practicality and scalability of the ML 
models using this platform and optimized re-synthesis of Ag NCs beyond 
the platform. Moreover, the X-ray diffraction (XRD) patterns of the 
synthesized Ag NCs show five distinct peaks around 38◦, 44◦, 64◦, 77◦

and 81◦ in the 2θ region (Fig. 4D), which are assigned to (111), (200), 
(220), (311) and (222) planes, respectively. The obtained Bragg’s re-
flections are indexed on the basis of the fcc structure of standard Ag 
atoms (JCPDS card No. 04–0783). The FWHM of the XRD peak becomes 
narrow with the increase of particle size, demonstrating that the crys-
tallinity of Ag NCs becomes better with the growth. And as shown in the 
high-resolution TEM (HRTEM) image and selected area electron 
diffraction (SAED) pattern of the single particle (Fig. 4E), the synthe-
sized Ag NC exhibits polycrystalline structures with diffraction rings. 

The lifetime analysis of Ag NC synthesized by mass production is 
displayed in Fig. 4F. It can be clearly seen that the intensity and FWHM 
of extinction peak of Ag NCs have almost no change within 50 days after 
fresh synthesis, indicating that there is no significant change in the 
morphology and size distribution of Ag NCs in storage. And the quality 
of Ag NCs obviously deteriorates after 90 days of storage. Moreover, 
extinction spectra of freshly synthesized Ag NCs with different sizes 
overlap well with those after 6 weeks of storage (Fig. S20), indicating 
that the synthesized Ag NCs have strong stability against aggregation 

Fig. 3. Optical characterization of Ag NCs with size control. (A) Extinction spectra of Ag NCs with different calculated sizes (40–230 nm, 2 nm size gap) with the inset 
showing the high-quality digital photo of Ag NCs on the microplate. (B) ML models of the calculated size and peak position including the dipolar peak, quadrupolar 
peak, and octupolar peak. (C) Linear relationship between the calculated sizes by the classical growth model and actual sizes by the ML-predicted model. (D) RGB 
color-block photo of Ag NCs with different sizes recorded by a camera on the robotic platform. (E) Scatter plot of the RGB values and average sizes of Ag NCs. (F) 
Color database of the ML model with RGB values and average sizes of Ag NCs. 
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and chemical dissolution for subsequent use. These results demonstrate 
that Ag NCs synthesized without polymers can maintain a good shape, 
size, and narrow distribution for a long time with TSC as stabilizing 
agents. 

3.4. Application of Ag NCs for Hg2+ detection 

As discussed above, the optical properties of Ag NCs greatly depend 
on their shape and size, which affect the reproducibility and sensitivity 
in optical applications. Homogeneous Ag NCs are often used for the 
optical detection of hazardous substances due to their high SPR effi-
ciency and the dipolar efficiency reaches the maximum at about 50 nm 
(Fig. 5A), indicating a large signal response in colorimetric detection. 
Thus, the colloidal dispersions containing 50 nm Ag NCs are selected for 
Hg2+ detection by colorimetry. 

As shown in Fig. S21, typical interferences are investigated in situ on 
the platform. Compared with other metal ions including Na+, K+, Li+, 
Mg2+, Ca2+, Zn2+, Al3+, Fe2+, Fe3+, Co2+, Ni2+, Ti4+, Cu2+, Cd2+, Cr3+, 
Mn2+, Sr2+, Zr4+, Ag+, Ba2+, Pb2+, and Ga3+, the changing ratio (ΔE/ 
Emax) of the extinction value of the dipolar peak of Ag NCs after addition 
of Hg2+ was much larger for the same high concentration (Fig. 5B). 
Accordingly, the color of the dispersion containing Hg2+ changes from 
yellow to dark grey, whereas the color of the dispersions remains almost 
the same after addition of the other metal ions (Fig. 5C). The high 
selectivity can be further explained by the fact that the redox potential of 

Hg2+/Hg (0.845 V) is higher than that of Ag+/Ag (0.799 V), while other 
interfering cations have lower redox potentials [16,51]. The signifi-
cantly reduced intensity of extinction peaks confirms the occurrence of 
the redox reaction, as shown in equation (2). The change of XRD pat-
terns of Ag NCs after the addition of Hg2+ (Fig. S22) further indicates 
that the crystal structures of Ag NCs as optical sensors are obviously 
etched by Hg2+. 

2Ag(s) + Hg2+(aq)→2Ag+(aq) + Hg(s) (2) 

One of the advantages of the database established is to produce 
stable colloidal dispersions of Ag NCs with weak ligands (TSC-Ag NCs), 
which can be displaced easily by other long-chain polymers. As shown in 
Fig. 5D, the possibility of modification of TSC-Ag NCs has been 
demonstrated by ligand exchange with PVP and GEL, which have high 
chemical affinities to Ag. The characteristic peaks of Fourier transform 
infrared (FT-IR) spectra of PVP-Ag NCs and GEL-Ag NCs change signif-
icantly after the ligand exchange of TSC-Ag NCs, indicating that the 
long-chain polymers have replaced original TSC ligands as functional 
groups on the surface of Ag NCs (Fig. S23). As the molecular weight of 
the surface ligand increases, the variation in extinction intensity of Ag 
NCs to Hg2+ concentration decreases (Fig. S24 and S25). The color 
changes of TSC-Ag NCs are more sensitive than those modified with 
polymers, while the color changes of PVP-Ag NCs and GEL-Ag NCs are 
more abundant at higher Hg2+ concentrations (Fig. 5E). This obvious 
difference in the photochemical change of Ag NCs can be explained by 

Fig. 4. Scale-up explorations of Ag NCs beyond the platform. (A) Scale-up experiments of Ag NCs with four average sizes (50, 100, 150, and 200 nm) by increasing 
the volume from 1 to 1,000 mL. (B) Histogram of the dipolar peak positions of Ag NCs synthesized in different volumes. (C) TEM images of the synthesized Ag NCs 
with different sizes (50, 100, 150, and 200 nm from left to right). (D) XRD patterns of the synthesized Ag NCs with different sizes, the inset on the right is a partial 
enlargement of the yellow area. (E) HRTEM image and SAED pattern of 50 nm single-particle Ag NC. (F) Lifetime analysis of 50 nm synthesized Ag NCs by recording 
the intensity change (black line) and FWHM (red line) of their extinction spectra. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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the density of the surface coatings which hinder the diffusion and re-
action of Hg2+. The results demonstrate that the surface chemistry of Ag 
NCs is critical to visual detection and further modifications broaden the 
detection ranges of Hg2+ at higher concentrations. 

Since Ag NCs modified with various ligands exhibit uniformity and 
reproducibility in color change, quantitative determination of Hg2+

concentration (C) is carried out by colorimetry. Since the signal-to-noise 
ratio (S/N) is greater than 3, the changing ratios of extinction intensities 
of TSC-Ag NCs, PVP-Ag NCs, and GEL-Ag NCs bear linear relationships 
with Hg2+ concentrations from 0.01 to 40 µM, 0.01 to 80 µM, and 0.1 to 
200 µM, respectively (Fig. S26). The standard curves (R2 greater than 
0.97) for quantitative detection of Hg2+ are established (Fig. 5F), and 
the concentration of Hg2+ can be determined quantitatively in the linear 
range of 0.01 to 200 µM with a detection limit (S/N = 3) of 3 nM. The 

modification of surface ligands of Ag NCs can coordinate their perfor-
mance in Hg2+ detection as colorimetric sensors. Compared with other 
Hg2+ colorimetric sensors reported recently [5,16,51–56], the sensi-
tivity of prepared Ag NCs is much better, especially in terms of the 
ultrabroad linear range (Table S13). 

In order to investigate the commercial feasibility, a series of real 
samples are further tested (Table S14). The sample recoveries are be-
tween 94.8 and 105.6 %, and the relative standard deviations (RSDs) are 
between 1.67 and 3.33 %. The excellent linear relationship (R2 = 0.989) 
between the actual and calculated concentration verifies the reliability 
and practicality of Hg2+ quantitative detection on the robotic platform 
(Fig. 5G). The synthesized Ag NCs with various ligands can still maintain 
a good linear response with expected results in samples of river water. 
These results demonstrate that the platform can achieve the efficient and 

Fig. 5. Application of Ag NCs for Hg2+ detection by colorimetry. (A) Calculated extinction spectra of Ag NCs with different sizes at fixed particle numbers, the inset 
exhibits the normalized efficiency of dipolar peaks. (B) Histogram of the changing ratio (ΔE/Emax) of extinction intensities of Ag NCs after the addition of different 
metal ions (0.2 mM). (C) RGB color-block photo of Ag NCs for Hg2+ selective detection in various metal ions. (D) FT-IR spectra of Ag NCs modified with different 
surface ligands including TSC, PVP, and GEL. (E) RGB color-block photo of Ag NCs modified with different surface ligands for Hg2+ detection. (F) Linear curves of the 
changing ratios of extinction intensities of Ag NCs with Hg2+ concentrations. (G) Scatter plot of the actual Hg2+ and calculated Hg2+ concentrations. 
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high-throughput screening of stable Ag NCs for colorimetric quantitative 
analysis in real water. Moreover, interference study in real samples is 
also investigated in situ on the platform (Fig. S27). It is found that the 
synthesized Ag NCs as optical sensors have good stability and strong 
selectivity for Hg2+ detection in real water. Generally, the benefits of the 
new approach against existing state-of-the-art practices (Table S15) 
have been proved with the help of technological development 
[27,28,30–33,36,37,41]. 

4. Conclusions 

In this study, an automated high-throughput platform is established 
for the wet-chemical synthesis and optical characterization of colloidal 
Ag NCs. The ML-predicted models of FWHM and peak positions are 
constructed by optical simulation and adopted as data-driven models to 
evaluate the uniformity and nanoscale of Ag NCs. According to the 
experimental database of more than 1,200 valid samples, the ML model 
incorporating multiple synthesis parameters is established for uniform 
synthesis and can further match the classical growth model to achieve 
size control of Ag NCs. On the basis of the controllable synthesis, the 
database is established for the optical properties of Ag NCs and digitized 
to correlate with their size. Optimized manual re-synthesis of high- 
quality Ag NCs validates the practical feasibility and scalability of 
established models. The TSC-Ag NCs can be modified by polymer ligands 
(PVP, GEL) as colorimetric sensors for efficient and quantitative detec-
tion of Hg2+ in the linear concentration range of 0.01 to 200 µM with a 
detection limit of 3 nM. The results demonstrate the controllable syn-
thesis of Ag NCs can be achieved to improve their reproducibility and 
sensitivity in Hg2+ determination on the robotic platform. Therefore, 
this work provides a new scientific strategy for the high-throughput 
study of colloidal Ag NCs, including data-driven modeling of simu-
lated information, automated synthesis and characterization in wet 
chemistry, ML optimization of multiple parameters, and in situ screening 
in color application. AI in chemistry is expected to attract more attention 
and particular interest to accelerate the development of advanced op-
tical materials. 
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Experimental Section 

Materials. Silver nitrate (AgNO3), trisodium citrate dihydrate (TSC), ascorbic acid (AA), 

ammonia water (NH3·H2O, 25%), NaCl, KCl, NiCl2, MnCl2, Pb(NO3)2 and Hg(NO3)2 were 

purchased from Sinopharm Chemical Reagent Co. Ltd. LiCl, MgCl2, CaCl2, ZnCl2, AlCl3, 

FeCl2, FeCl3, CoCl2, Ti(NO3)4, CuCl2, CdCl2, CrCl3, SrCl2, ZrCl4, BaCl2 and Ga(NO3)3 were 

ordered from Aladdin, China. Polyvinyl pyrrolidone (PVP, K15) and gelatin (GEL) were 

bought from Sigma-Aldrich. All chemical reagents were used as received without further 

treatment. The deionized water (18 MΩ cm) was used in experiments without special emphasis. 

Preparation of Ag-NC seeds. Ag-NC seeds with small size were prepared according to the 

reported protocol.1 Typically, the aqueous TSC solution (1.5 mL, 50 mM), the aqueous AgNO3 

solution (1 mL, 30 mM), and the aqueous NaCl solution (0.4 mL, 20 mM) were successively 

added to 2.1 mL of water under stirring at room temperature. After 5 min of premixing, the 

aqueous AA solution (1 mL, 15 mM) and the premixture were quickly added into 94 mL of the 

boiling water in succession. After continuously heating and stirring for 1 h, the resulting 

dispersion of Ag NCs was naturally cooled to room temperature. The average size of the Ag-

NC seeds was about 24 nm according to the statistical result of TEM (Fig. S22) and the particle 

concentration of seeds in the original solution was calculated to be about 4.26 × 1011 mL−1 

according to the equation (1): 

𝑛 =
6𝑚

𝜋𝑑3𝜌𝑁𝐴𝑉
         (1) 

where 𝑛 is the particle concentration of the as-prepared seeds in the original solution, 𝑚 is 

the Ag mass and is derived from the amount of AgNO3 used for the synthesis of seeds, 𝜋 is a 

constant, 𝑑 is the diameter of seeds, 𝜌 is the Ag density, 𝑁𝐴 is the Avogadro′s constant, 𝑉 

is the total volume of the resulting dispersion of seeds. Since some reagents (such as TSC, AA, 

etc.) are also used for the subsequent growth, excess reagents in the original solution of seeds 

must be removed to ensure the accuracy of the established models of subsequent experiments. 

The original solution of Ag-NC seeds was centrifuged (12000 rcf, 10 min) to remove the 

supernatant and then redispersed into deionized water, and the particle concentration of seeds 
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after redispersion remained the same as before with the calibration of extinction spectra of the 

aqueous solutions. 

Colloidal stability of Ag NCs. The extinction spectra of the as-prepared Ag NCs in mass 

productions were recorded to evaluate their colloidal stability. Firstly, the colloidal solutions 

of Ag NCs obtained in mass productions were heating at 50 ℃ for 5 min to remove the excess 

ammonia water, which may destroy the shape-size and dispersion of Ag NCs in the long-term 

storage. After that, the colloidal solutions were naturally cooled to room temperature and stored 

with seal in dark places. The extinction spectra of the colloidal solutions were recorded during 

long-term storage for comparison. Noted that the colloidal solutions of Ag NCs with large sizes 

needed to be well mixed to prevent the effects of sedimentation before spectral acquisitions. 

Ligand exchange of Ag NCs. 50 nm Ag NCs stabilized with TSC as surface ligands were 

firstly synthesized in mass production with the method described previously. Typically, three 

aliquots of 50 mL each were purified by centrifugation (7000 rcf, 10 min). One of the aliquots 

was redispersed in the aqueous PVP solution (0.03 wt %) and stirred vigorously at room 

temperature for 3 h. Then, the resulting Ag NCs were washed again to eliminate the excess 

PVP and further redispersed in deionized water. Similarly, another of the aliquots was 

functionalized with the aqueous GEL solution (0.03 wt %) by the same procedure except that 

GEL was replaced by PVP as new surface ligands. For comparison, a third of the aliquots was 

redispersed in deionized water. Thus, three kinds of Ag NCs with different surface ligands 

(including TSC, PVP and GEL) were obtained and used as solution-based optical sensors for 

Hg2+ detection. 

Structural characterization. The morphology, average size, and selected area electron 

diffraction pattern of Ag NCs were intuitively characterized by a JEOL transmission electron 

microscope (TEM, JEM-2100F), which was operated at an accelerating voltage of 200 kV. The 

average size and standard deviation in the size of all samples were obtained by statistically 

counting more than 100 particles according to their corresponding TEM images. Powder X-ray 

diffraction (XRD) was performed on the Rigaku SmartLab diffractometer with Cu Kα radiation 
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(λ=1.54056 Å). Fourier transform infrared (FT-IR) spectra were carried out on the PerkinElmer 

Frontier with the ATR accessory. 
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Figure S1. Schematic illustration of optical simulation based on Mie theory. (A) Calculated 

model of spherical Ag NCs dispersed in water with normal size distribution to predict the 

uniformity (standard deviation, 2-40 %) and nanoscale (average size, 30-220 nm) of the as-

prepared Ag NCs. (B) Calculated spectra of spherical Ag NCs (10 %, 60 nm), the optical 

efficiencies including extinction, scattering, and absorption.  
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Figure S2. Schematic representations and physical images of the robotic platform.  

 

 
 

Figure S2 shows the structural model of the robotic platform and physical images of 

component parts. The robotic platform is equipped with a computer control panel for inputting 

experimental recipes and process steps, an automatic pipetting module with eight channels (1-

1250 µL) and coordinate systems for liquid-phase high-throughput synthesis, a color-ultra-

sensitive mobile camera for collecting the color change, a mobile robot carrying in a fixed 

trajectory for moving the samples to proper positions, a six-axis robotic arm transferring the 

samples to other devices for postprocessing, an intelligent storage system for storing the 

samples, a multiskan spectrum for bulk spectral acquisition, and a temperature controller for 

thermal demand. It can meet the needs of wet-chemical synthesis and in situ optical 

characterizations through the cooperation of various components on the automated platform. 
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Figure S3. Characterizations of Ag-NC seeds.  
 

 
 

The Ag-NC seeds were first prepared according to the protocol described in the experimental 

section of Supporting Information. Figure S3 shows the extinction spectrum and TEM image 

of Ag-NC seeds. The center position of the symmetrical peak in the extinction spectrum of Ag-

NC seeds is at 400 nm. And the TEM result also shows that the Ag-NC seeds have a narrow 

size distribution and the average size is about 24 nm. 
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Figure S4. Extinction spectra of Ag NCs synthesized in 96 single-factor experiments. The 

single-factor experiments are carried out automatically on the robotic platform and grouped by 

the concentrations of various agents, including TSC (A, 0.03-2.88 mM), NH3∙H2O (B, 3-98 

mM) and AA (C, 0.1-0.67 mM). For single-factor experiments, the values of other factors are 

fixed except for the investigated factor. 
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Figure S5. Experimental databases and ML models of FWHM for single-factor synthesis. (A-

C) ML models with experimental databases of FWHM for single-factor synthesis, including 

TSC, NH3∙H2O and AA. (D-F) Scatter plots of the experimental value and ML predicted value 

for single-factor synthesis. The well-fitting responses (R2>0.95) are obtained by ML algorithm 

of logistic regression. 
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Figure S6. Extinction spectra of Ag NCs synthesized in 96 double-factor experiments grouped 

by the concentrations of TSC and NH3∙H2O. For double-factor experiments, the values of other 

factors are fixed except for the investigated factors.  

 

 
 

  



S-11 
 

Figure S7. Extinction spectra of Ag NCs synthesized in 96 double-factor experiments grouped 

by the concentrations of TSC and AA. For double-factor experiments, the values of other 

factors are fixed except for the investigated factors. 
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Figure S8. Extinction spectra of Ag NCs synthesized in 96 double-factor experiments grouped 

by the concentrations of NH3∙H2O and AA. For double-factor experiments, the values of other 

factors are fixed except for the investigated factors. 
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Figure S9. Experimental databases and ML models of FWHM for double-factor synthesis. (A-

C) ML models with experimental databases of FWHM for double-factor synthesis, including 

TSC versus NH3∙H2O, TSC versus AA, and NH3∙H2O versus AA. (D-F) Scatter plots of the 

experimental value and ML predicted value for double-factor synthesis. The well-fitting 

responses (R2>0.96) are obtained by ML algorithm of SISSO.  
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Figure S10. Experimental database and ML model of FWHM for triple-factor synthesis. (A) 

ML model with experimental database of FWHM for triple-factor synthesis, containing TSC, 

NH3∙H2O and AA. (B) Scatter plot of the experimental value and ML predicted value for triple-

factor synthesis. The well-fitting response (R2>0.97) is obtained by ML algorithm of SISSO. 
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Figure S11. Overview of the high-throughput synthesis for the uniformity of Ag NCs. (A) 

Summarized data of the peak position of extinction spectra of the resulting Ag NCs obtained 

by the automated experiments on the robotic platform, including single factor, double factors 

and triple factors. (B) Summarized data of FWHM of extinction spectra of the resulting Ag 

NCs in the high-throughput synthesis for uniformity. 
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Figure S12. Redox potential analysis of the synthesis of Ag NCs.  

 

 
 

As shown in Figure S12, ammonia water plays an important role on the difference in redox 

potential in the seeded growth of Ag NCs. The difference in redox potential between 

[Ag(NH3)2]
+ and AA is about 0.433 V under the alkaline condition (pH=10), which is far lower 

that (0.635 V) between pure Ag+ and AA under the acidic condition (pH=4). It can be clearly 

seen that the tendency of the Ag reduction is rather low after the addition of NH3∙H2O, which 

results in fewer nuclei and slower growth of Ag layers on Ag-NC seeds. 
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Figure S13. Kinetic analysis of the synthesis of Ag NCs. 

 

 
 

Figure S13 shows the kinetic curves of Ag NCs during the seeded growth with different 

concentrations of NH3∙H2O by plotting the variation (E/Emax) of the dipolar peak intensity in 

extinction spectra. For dynamic experiments, the values of other factors are fixed as shown in 

Table S2 except for the concentration of NH3∙H2O. The results indicate that the concentration 

of NH3∙H2O can regulate the growth rate of Ag NCs, which should be finely adjusted. 
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Figure S14. The reproducibility of the established ML model for the uniformity of synthesis. 

(A-C) Extinction spectra of the resulting Ag NCs obtained by regularly changing the particle 

number of seeds under different optimal conditions (given in Figure 2C and Table S5). (D) 

Scatter diagram of FWHM of the dipolar peak in extinction spectra. (E) Scatter diagram of the 

dipolar peak position in extinction spectra. (F) Scatter diagram of the actual diameter of the 

resulting Ag NCs based on the dipolar peak position and the ML predicted model (Figure 2E). 
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Figure S15. Relationship between the diameter of Ag NCs and the particle number of seeds. 

(A-C) Synthetic databases and the classical growth models between the diameter of Ag NCs 

and the particle number of seeds under different optimal conditions. (D-F) Scatter plots of the 

actual diameter based on the ML model of optical simulation and the calculated diameter based 

on the classical growth model. The well-fitting responses of experimental results (R2>0.99) are 

obtained by the classical growth model. 
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Figure S16. Size control of Ag NCs with regular intervals. (A) Relationship between the actual 

diameter of Ag NCs and the particle number of seeds based on the classical growth model. (B) 

Linear curve by plotting the actual diameter of Ag NCs (D) with the reciprocal of the cube root 

of the particle number of seeds (N-1/3). The well-fitting response (R2>0.99) is obtained by ML 

algorithm of linear regression.  
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Figure S17. RGB colors of Ag NCs with size control. (A) Color database with ML model of 

RGB value and the Ag-NC size. The concentration of Ag atom is fixed at 0.4 mM in this system. 

(B) Scatter plot of the actual size and ML predicted size of Ag NCs. The well-fitting response 

(R2>0.99) is obtained by ML algorithm of SISSO.  
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Figure S18. Statistical chart of the actual size of Ag NCs obtained in scale-up experiments.  

 

 
 

Figure S18 shows the actual size of Ag NCs obtained in scale-up experiments. It can be 

clearly seen that the actual diameters of Ag NCs obtained in different volumes are almost the 

same, which indicates that the optimal recipes screened on the robotic platform can be perfectly 

repeated to meet the imperious demand of the mass production of Ag NCs with high quality 

for many practical applications. 
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Figure S19. Low-magnification TEM images (A-D) of Ag NCs synthesized in mass 

productions with various sizes (50, 100, 150, and 200 nm).  
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Figure S20. Long-term stability of Ag NCs with different sizes synthesized in mass production. 

(A) Extinction spectra of 50 nm Ag NCs after fresh synthesis and storage for 6 weeks. (B) 

Extinction spectra of 100 nm Ag NCs after fresh synthesis and storage for 6 weeks. (C) 

Extinction spectra of 150 nm Ag NCs after fresh synthesis and storage for 6 weeks. (D) 

Extinction spectra of 200 nm Ag NCs after fresh synthesis and storage for 6 weeks.  
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Figure S21. Selective identification of Hg2+. (A) Extinction spectra of 50 nm Ag NCs before 

and after the addition of various metal ions, including Na+, K+, Li+, Mg2+, Ca2+, Zn2+, Al3+, Fe2+, 

Fe3+, Co2+, Ni2+, Ti4+, Cu2+, Cd2+, Cr3+, Mn2+, Sr2+, Zr4+, Ag+, Ba2+, Pb2+, Ga3+, and Hg2+. The 

final concentrations of various metal ions in aqueous solutions are fixed at 0.2 mM. (B) High-

quality digital photo of 50 nm Ag NCs before and after the addition of various metal ions. (C) 

Recognized RGB color-block photo generated from the corresponding digital photo. 
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Figure S22. XRD patterns of Ag NCs before and after the addition of Hg2+ (10 µM). 
 

 
 

 
 

  



S-27 
 

Figure S23. FT-IR spectra of Ag NCs modified with various ligands. (A) FT-IR spectra of 

TSC-Ag NCs and TSC. (B) FT-IR spectra of PVP-Ag NCs and PVP. (C) FT-IR spectra of GEL-

Ag NCs and GEL.  

 

 

 

As shown in Figure S23, FT-IR analysis is used to characterize the functional groups and 

structural bonds of chemical substances on the surface of Ag NCs. Two strong peaks 

corresponding to the stretching modes of the carboxylic group of TSC are located at 1394 cm-

1 and 1576 cm-1 in the FT-IR spectrum (Figure S23A). And the peak positions of TSC-Ag NCs 

shift slightly to 1396 cm-1 and 1582 cm-1 in the FT-IR spectrum. Compared with the strong 

peaks of PVP, the typical bands of the C-N and C=O of PVP-Ag NCs at 1290 cm-1 and 1653 

cm-1 are reduced remarkably (Figure S23B). The result indicates that PVP ligands successfully 

replace TSC ligands and combine with Ag NCs through the C-N and C=O bands. Three obvious 

characteristic peaks corresponding to amide Ⅰ, Ⅱ, and Ⅲ of GEL are located at 1638 cm-1, 

1541 cm-1, and 1242 cm-1 (Figure S23C), which can be attributed to the presence of the C=O 

stretching vibration, the N-H bending vibration, and the N-H stretching vibration. In the FT-IR 

spectrum of GEL-Ag NCs, the band of the C=O stretching vibration shifts to 1647 cm-1 and 

the band of the N-H stretching vibration almost disappears, indicating GEL ligands 

successfully bind to the surface of Ag NCs. These results validate that TSC-Ag NCs are 

successfully modified with PVP and GEL through ligand exchange. 
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Figure S24. Differences in Hg2+ detection of Ag NCs modified with different surface ligands. 

(A) Extinction spectra of 50 nm TSC-Ag NCs before and after the addition of Hg2+. (B) 

Extinction spectra of 50 nm PVP-Ag NCs before and after the addition of Hg2+. (C) Extinction 

spectra of 50 nm GEL-Ag NCs before and after the addition of Hg2+. The final concentration 

of Hg2+ in aqueous solutions is fixed at 0.2 mM. 
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Figure S25. Color changes of Hg2+ detection. (A) High-quality digital photo of 50 nm Ag NCs 

modified with different ligands after the addition of different concentrations of Hg2+ (0-200 

µM). (B) Recognized RGB color-block photo generated from the corresponding digital photo. 

Each test is carried out three times in parallel on the platform. 
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Figure S26. Hg2+ detection of Ag NCs modified with various surface ligands. (A-C) Extinction 

spectra of 50 nm Ag NCs with different concentrations of Hg2+ (0-200 µM). The surfaces of 

Ag NCs are modified by TSC, PVP and GEL, respectively. (D-F) Scatter diagrams of the 

changing ratio (∆E/Emax) of extinction value of dipolar peaks with the corresponding 

concentrations of Hg2+. The error bars are added from the results of three parallel experiments. 
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Figure S27. Interference study of the synthesized Ag NCs as optical sensors in real water 

samples. (A-C) Histograms of the changing ratios (∆E/Emax) of extinction intensities of TSC-

Ag NCs (A), PVP-Ag NCs (B), and GEL-Ag NCs (C) after the addition of different metal ions 

(0.2 mM). 
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Table S1. Database of optical simulation of Ag NCs. Extinction spectra of spherical Ag NCs 

generally with normal distributions were simulated to predict the uniformity and nanoscale of 

the as-prepared Ag NCs as targeted data screening (Figure 2A and 2D).  

 

Uniformity Nanoscale 

No. 
Size a 
(nm) 

SD b 
(%) 

FWHM c 
(nm) 

Peak d 
(nm) 

No. 
Size 
(nm) 

SD 
(%) 

FWHM 
(nm) 

Peak 
(nm) 

1 60 2 69 434 21 30 10 38 406 
2 60 4 70 434 22 40 10 46 413 
3 60 6 71 433 23 50 10 58 423 
4 60 8 72 433 24 60 10 73 432 
5 60 10 73 432 25 70 10 100 446 
6 60 12 75 432 26 80 10 134 462 
7 60 14 76 431 27 90 10 / e 475 
8 60 16 78 431 28 100 10 / 496 
9 60 18 80 430 29 110 10 / 514 
10 60 20 82 430 30 120 10 / 537 
11 60 22 84 428 31 130 10 / 561 
12 60 24 85 428 32 140 10 / 585 
13 60 26 87 428 33 150 10 / 612 
14 60 28 88 427 34 160 10 / 636 
15 60 30 90 427 35 170 10 / 666 
16 60 32 91 426 36 180 10 / 697 
17 60 34 92 426 37 190 10 / 727 
18 60 36 93 425 38 200 10 / 757 
19 60 38 94 425 39 210 10 / 786 
20 60 40 95 424 40 220 10 / 817 

a The average size of Ag NCs is equal to the average diameter (D) of Ag NCs. b The standard deviation (SD) 
of the size follows the normal distribution. c The full width at half maxima (FWHM) is estimated from the 
width at half of the dipolar peak of the simulated spectra. d The center position of the dipolar peak is measured 
from the simulated spectra. 
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Table S2. Summarized recipes of single-factor experiments for the uniformity of synthesis. For 

single-factor experiments, the values of other factors were fixed as standard values except for 

the investigated factor. The single-factor experiments with 96 concentration gradients were 

carried out with regular intervals. And the standard values of the concentrations of TSC, 

NH3∙H2O and AA were 0.15, 90 and 0.65 mM, respectively. The amounts of silver precursors 

including seeds and AgNO3 were fixed. 

 

No. 
NSeeds 

(×1010) 
AgNO3 
(mM) 

TSC 
(mM) 

NH3∙H2O 
(mM) 

AA 
(mM) 

1 

5.83 0.4 

0.03 3 0.100 
2 0.06 4 0.106 
3 0.09 5 0.112 
4 0.12 6 0.118 
5 0.15 7 0.124 
6 0.18 8 0.130 
7 0.21 9 0.136 
8 0.24 10 0.142 
9 0.27 11 0.148 
10 0.30 12 0.154 
11 0.33 13 0.160 
12 0.36 14 0.166 
… … … … 
96 2.88 98 0.670 

Range Fixed Fixed 0.03-2.88 3-98 0.1-0.67 
Interval 0 0 0.03 1 0.006 
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Table S3. Summarized recipes of double-factor experiments for the uniformity of synthesis. 

For double-factor experiments, the values of other factors were fixed as standard values except 

for the investigated factors. The double-factor experiments with 96 concentration gradients 

were carried out with 8 × 12 levels. And the fixed standard values of TSC, NH3∙H2O, AA, seeds 

and AgNO3 were shown in Table S2. 

 

TSC versus NH3∙H2O TSC versus AA NH3∙H2O versus AA 

Level 
TSC 
(mM) 

NH3∙H2O 
(mM) 

Level 
TSC 
(mM) 

AA 
(mM) 

Level 
NH3∙H2O 

(mM) 
AA 

(mM) 
1 0.2 12 1 0.15 0.14 1 12 0.14 
2 0.4 20 2 0.30 0.21 2 20 0.21 
3 0.6 28 3 0.45 0.28 3 28 0.28 
4 0.8 36 4 0.60 0.35 4 36 0.35 
5 1.0 44 5 0.75 0.42 5 44 0.42 
6 1.2 52 6 0.90 0.49 6 52 0.49 
7 1.4 60 7 1.05 0.56 7 60 0.56 
8 1.6 68 8 1.20 0.63 8 68 0.63 
9  76 9 1.35  9 76  
10  84 10 1.50  10 84  
11  92 11 1.65  11 92  
12  100 12 1.80  12 100  
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Table S4. Summarized recipes of triple-factor experiments for the uniformity of synthesis. The 

triple-factor experiments with 96 concentration gradients were carried out with 4 × 6 × 4 levels. 

And the fixed standard values of seeds and AgNO3 were shown in Table S2. 

 

Level 
Triple-factor experiments 

TSC (mM) NH3∙H2O (mM) AA (mM) 
1 0.2 15 0.2 
2 0.4 30 0.35 
3 0.6 45 0.50 
4 0.8 60 0.65 
5  75  
6  90  
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Table S5. Summarized recipes of confirmatory experiments for the uniformity of synthesis. 

The optimized conditions for the uniformity of synthesis were given by the established ML 

model (Figure 2C) of multiple synthesis factors. 

 

No. 
NSeeds 

(×1010) 
Condition 

1 
No. 

NSeeds 
(×1010) 

Condition 
2 

No. 
NSeeds 

(×1010) 
Condition 

3 
1 0.12 

AgNO3 
(0.4 mM) 

+ 
TSC 
(0.15 
mM) 

+ 
NH3∙H2O 
(95 mM) 

+ 
AA 

(0.55 
mM) 

97 0.12 

AgNO3 
(0.4 mM) 

+ 
TSC 

(0.2 mM) 
+ 

NH3∙H2O 
(90 mM) 

+ 
AA 

(0.6 mM) 

193 0.12 
AgNO3 

(0.4 mM) 
+ 

TSC 
(0.25 
mM) 

+ 
NH3∙H2O 
(85 mM) 

+ 
AA 

(0.65 
mM) 

2 0.24 98 0.24 194 0.24 
3 0.36 99 0.36 195 0.36 
4 0.48 100 0.48 196 0.48 
5 0.60 101 0.60 197 0.60 
6 0.72 102 0.72 198 0.72 
7 0.84 103 0.84 199 0.84 
8 0.96 104 0.96 200 0.96 
9 1.08 105 1.08 201 1.08 

10 1.20 106 1.20 202 1.20 
11 1.32 107 1.32 203 1.32 
12 1.44 108 1.44 204 1.44 
… … … … … … 
96 11.52 192 11.52 288 11.52 

Range 0.12-11.52 Fixed Range 
0.12-
11.52 

Fixed Range 
0.12-
11.52 

Fixed 

Interval 0.12 0 Interval 0.12 0 Interval 0.12 0 
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Table S6. Summarized recipes of size-control experiments. For size-control experiments, the 

required particle number of Ag-NC seeds (NSeeds) could be calculated according to the classical 

growth model. The calculated diameter (Cal. D) of Ag NCs were set in the range of 40 to 230 

nm with regular interval. And the concentrations of AgNO3, TSC, NH3∙H2O and AA were 0.4, 

0.15, 90 and 0.65 mM, respectively. 

 

No. 
Cal. D 
(nm) 

NSeeds 
(×1010) 

No. 
Cal. D 
(nm) 

NSeeds 
(×1010) 

No. 
Cal. D 
(nm) 

NSeeds 
(×1010) 

1 40 23.485 33 104 1.061 65 168 0.249 
2 42 19.553 34 106 1.001 66 170 0.241 
3 44 16.513 35 108 0.946 67 172 0.232 
4 46 14.110 36 110 0.895 68 174 0.224 
5 48 12.177 37 112 0.847 69 176 0.217 
6 50 10.599 38 114 0.803 70 178 0.209 
7 52 9.294 39 116 0.762 71 180 0.203 
8 54 8.204 40 118 0.723 72 182 0.196 
9 56 7.283 41 120 0.687 73 184 0.190 
10 58 6.500 42 122 0.654 74 186 0.184 
11 60 5.828 43 124 0.623 75 188 0.178 
12 62 5.249 44 126 0.593 76 190 0.172 
13 64 4.745 45 128 0.566 77 192 0.167 
14 66 4.306 46 130 0.540 78 194 0.162 
15 68 3.920 47 132 0.515 79 196 0.157 
16 70 3.580 48 134 0.493 80 198 0.152 
17 72 3.278 49 136 0.471 81 200 0.148 
18 74 3.011 50 138 0.451 82 202 0.143 
19 76 2.772 51 140 0.432 83 204 0.139 
20 78 2.558 52 142 0.414 84 206 0.135 
21 80 2.365 53 144 0.396 85 208 0.131 
22 82 2.192 54 146 0.380 86 210 0.127 
23 84 2.036 55 148 0.365 87 212 0.124 
24 86 1.894 56 150 0.351 88 214 0.120 
25 88 1.765 57 152 0.337 89 216 0.117 
26 90 1.648 58 154 0.324 90 218 0.114 
27 92 1.541 59 156 0.312 91 220 0.111 
28 94 1.443 60 158 0.300 92 222 0.108 
29 96 1.353 61 160 0.289 93 224 0.105 
30 98 1.271 62 162 0.278 94 226 0.102 
31 100 1.195 63 164 0.268 95 228 0.100 
32 102 1.125 64 166 0.258 96 230 0.097 
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Table S7. Summarized ML models of FWHM for the uniformity of synthesis. 

 

Factor 
 (Concentration, mM) 

Training 
Dataset 

ML Algorithm R2 RMSE MaxAE 

Single 

TSC (x) 
96 Logistic Regression 0.978 / / 

ML model: 92-21/[1+(x/1.23)1.98] 

NH3∙H2O (y) 
96 Logistic Regression 0.962 / / 

ML model: 71+39/[1+(y/8.22)1.32] 

AA (z) 
96 Logistic Regression 0.955 / / 

ML model: 71+17/[1+(z/0.26)2.59] 

Double 

x + y 
96 SISSO a 0.967 1.001 3.729 

ML model: -6.1[sin(lnx)sin(lny)]-3.1[sin(lny)lnx/ex]+1.4[sin(y1/2)-siny/lny]+81.3 

x + z 
96 SISSO 0.971 1.119 5.846 
ML model: -9.1[cos(x1/3/z1/2)]+0.5[cos(z-1)sinx/sinz]+22.8(z9x2/sinx)+82.8 

y + z 
96 SISSO 0.988 2.715 8.381 

ML model: -42.8[(zlny)1/2]-12.9[cos(z-1)/lnz]-1.1[(y/z)cos(y1/2)]+145.9 

Triple x + y + z 
96 SISSO 0.977 1.176 3.104 

ML model: 1.8[(sinz)-1+sinxlny]-143.5[sin(y1/3)lnxz/y]+1.2[cos(xy1/3)]+72.2 
a The SISSO models work in a hierarchical order, which creates a new feature space of varying complexity 

through algebraic operations ( + , -, ×, /, sin, cos, ()1/2, ()−1, ()2, ()3, ex, ln) on primary feature sets. 
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Table S8. Summarized data of extinction spectra of Ag NCs with size control. 

 

Cal. 
D a 

(nm) 

SPR peak (nm) b Act. 
D c 

(nm) 

Cal. 
D 

(nm) 

SPR peak (nm) Act. 
D 

(nm) 

Cal. 
D 

(nm) 

SPR peak (nm) Act. 
D 

(nm) Dipo. Quadru. Dipo. Quadru. Dipo. Quadru. Oct. 

40 416 / 38.4 104 503 408 104.4 168 648 449 / 162.9 
42 417 / 40.0 106 508 410 106.8 170 648 452 / 162.9 
44 419 / 43.0 108 513 411 109.2 172 648 453 / 162.9 
46 422 / 47.0 110 513 412 109.2 174 670 458 412 170.6 
48 424 / 49.5 112 516 412 110.6 176 670 465 414 170.6 
50 425 / 50.6 114 517 414 111.1 178 674 462 414 172.0 
52 426 / 51.8 116 528 416 116.2 180 670 462 413 170.6 
54 429 / 55.0 118 540 419 121.4 182 696 463 414 179.5 
56 431 / 57.0 120 540 418 121.4 184 696 463 414 179.5 
58 432 / 58.0 122 540 420 121.4 186 703 471 414 181.9 
60 434 / 59.9 124 545 421 123.6 188 703 476 420 181.9 
62 436 / 61.8 126 549 421 125.3 190 711 484 421 184.6 
64 437 / 62.7 128 552 421 126.5 192 718 492 425 186.9 
66 439 / 64.4 130 557 424 128.6 194 729 492 425 190.6 
68 443 / 67.7 132 554 424 127.4 196 729 508 437 190.6 
70 446 / 70.1 134 554 424 127.4 198 765 500 430 202.6 
72 449 / 72.4 136 554 425 127.4 200 774 502 432 205.6 
74 450 / 73.1 138 565 427 131.8 202 794 502 437 212.3 
76 454 / 76.0 140 573 427 135.0 204 799 500 437 213.9 
78 457 / 78.0 142 572 429 134.7 206 793 503 440 211.9 
80 459 / 79.4 144 580 430 137.8 208 810 515 440 217.6 
82 463 400 82.0 146 590 432 141.7 210 851 525 444 231.3 
84 466 400 83.9 148 591 435 142.0 212 852 537 449 231.7 
86 469 400 85.8 150 609 437 148.8 214 852 533 449 231.7 
88 474 402 88.8 152 597 437 144.3 216 851 530 449 231.3 
90 474 402 88.8 154 607 439 148.1 218 844 528 449 229.0 
92 479 402 91.7 156 613 443 150.3 220 852 528 444 231.7 
94 481 402 92.8 158 624 444 154.3 222 859 543 449 234.0 
96 489 406 97.2 160 613 446 150.3 224 851 539 449 231.3 
98 487 405 96.1 162 633 448 157.6 226 851 543 449 231.3 
100 493 406 99.3 164 624 448 154.3 228 852 533 449 231.7 
102 500 407 102.9 166 641 449 160.4 230 852 551 454 231.7 

a The calculated diameter (Cal. D) of Ag NCs is the required size of the particle number of Ag-NC seeds 
(NSeeds) based on the classical growth model. b The center position of SPR peaks of Ag NCs changes with 
size in their extinction spectra, including the dipolar peak (Dipo.), the quadrupolar peak (Quadru.) and the 
octupolar peak (Oct.). c The actual diameter (Act. D) is obtained from the ML predicted model of optical 
simulation and the dipolar peak position of extinction spectra of the as-prepared Ag NCs. 
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Table S9. Summarized data of RGB colors of Ag NCs with size control. 

 

Size (nm) 
Color (a.u.) 

Size (nm) 
Color (a.u.) 

Size (nm) 
Color (a.u.) 

R G B R G B R G B 
40 254 226 39 104 180 141 140 168 190 191 164 
42 254 225 38 106 178 141 142 170 191 192 164 
44 254 225 39 108 176 140 143 172 196 194 168 
46 254 224 38 110 175 142 144 174 196 194 169 
48 254 222 38 112 173 143 146 176 196 194 169 
50 254 218 38 114 171 146 148 178 195 192 169 
52 254 213 39 116 170 150 150 180 198 193 172 
54 254 212 39 118 170 153 151 182 199 194 173 
56 252 207 39 120 169 153 152 184 201 195 175 
58 250 204 39 122 169 157 154 186 200 192 175 
60 246 197 39 124 168 159 155 188 205 194 180 
62 243 193 38 126 166 160 156 190 207 196 182 
64 242 186 39 128 164 160 156 192 209 198 185 
66 241 181 40 130 162 161 158 194 209 197 187 
68 240 177 41 132 165 162 157 196 208 196 186 
70 239 175 42 134 166 163 157 198 205 194 185 
72 238 172 48 136 168 164 157 200 204 193 186 
74 235 167 55 138 169 165 157 202 208 197 188 
76 228 158 63 140 170 169 157 204 210 199 190 
78 225 155 70 142 171 171 157 206 210 199 190 
80 221 151 75 144 173 173 157 208 209 201 192 
82 218 149 82 146 177 177 158 210 207 201 192 
84 211 143 86 148 178 179 158 212 205 199 191 
86 205 138 90 150 179 180 158 214 203 195 188 
88 203 136 96 152 180 181 160 216 204 196 188 
90 201 136 103 154 181 182 159 218 206 199 191 
92 200 136 106 156 180 182 160 220 208 200 192 
94 197 136 113 158 180 183 160 222 206 199 190 
96 195 137 120 160 182 185 161 224 209 203 194 
98 191 137 125 162 182 185 161 226 209 204 195 
100 187 138 131 164 184 187 162 228 208 203 194 
102 185 138 133 166 186 188 163 230 208 203 195 
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Table S10. Summarized ML models of Ag NCs based on size control. 

 

Factor Training Dataset ML Algorithm R2 RMSE MaxAE 

NSeeds 
(n) 

384 
Logistic 

Regression 
0.996 / / 

ML model: (13824+1.1784*1016/n)1/3   （≈2.32*105n-1/3） 
RGB 

(i + j + k) 
96 SISSO 0.995 3.343 10.772 

ML model: 0.006[(cos(lnk)j2k/i]+0.184[(cosj-sini)/cos(j1/2)]-2260.229[cos(j/i)/(ilni/j)]+321.426 
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Table S11. Summarized spectral results of Ag NCs synthesized in scale-up experiments. 

 

No. 
Volume 

(mL) 
FWHM 

(nm) 
Dipo. 
(nm) 

No. 
Volume 

(mL) 
Dipo.  
(nm) 

No. 
Volume 

(mL) 
Dipo. 
(nm) 

No. 
Volume 

(mL) 
Dipo. 
(nm) 

1 1 56 425 36 1 497 71 1 603 106 1 773 
2 1 56 425 37 1 493 72 1 603 107 1 770 
3 1 56 425 38 1 497 73 1 603 108 1 772 
4 1 56 425 39 1 495 74 1 601 109 1 772 
5 1 56 426 40 1 497 75 1 603 110 1 775 
6 1 56 425 41 1 497 76 1 603 111 1 775 
7 1 56 425 42 1 497 77 1 599 112 1 770 
8 1 56 425 43 1 499 78 1 599 113 1 760 
9 1 55 425 44 1 497 79 1 603 114 1 770 
10 1 56 426 45 1 497 80 1 601 115 1 758 
11 1 56 425 46 1 495 81 1 601 116 1 760 
12 1 56 425 47 1 495 82 1 603 117 1 765 
13 1 56 425 48 1 495 83 1 603 118 1 768 
14 1 56 425 49 1 495 84 1 603 119 1 768 
15 1 57 427 50 1 495 85 1 603 120 1 768 
16 1 56 425 51 1 495 86 1 605 121 1 765 
17 1 55 425 52 1 495 87 1 603 122 1 768 
18 1 56 426 53 1 495 88 1 603 123 1 770 
19 1 56 425 54 1 495 89 1 603 124 1 760 
20 1 56 425 55 1 495 90 1 605 125 1 762 
21 1 56 425 56 1 495 91 1 603 126 1 765 
22 1 56 425 57 1 495 92 1 607 127 1 765 
23 1 56 426 58 1 495 93 1 605 128 1 765 
24 1 56 425 59 1 495 94 1 603 129 1 768 
25 2 56 425 60 2 500 95 2 608 130 2 768 
26 2 55 425 61 2 497 96 2 603 131 2 772 
27 2 56 427 62 2 497 97 2 602 132 2 769 
28 2 56 425 63 2 502 98 2 602 133 2 769 
29 2 56 425 64 2 501 99 2 603 134 2 772 
30 2 56 426 65 2 497 100 2 603 135 2 770 
31 5 56 425 66 5 495 101 5 605 136 5 770 
32 10 56 428 67 10 499 102 10 603 137 10 766 
33 50 56 428 68 50 495 103 50 601 138 50 765 
34 300 56 426 69 300 500 104 300 602 139 300 755 
35 1000 56 425 70 1000 499 105 1000 599 140 1000 763 
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Table S12. Summarized data of controllable synthesis of NCs. 

 

Material Synthesis Optimization 
Number of 

Valid Samples 
Size 
(nm) 

Yield 
(%) 

Reference 

Ag NCs 

Manual work Single factor <70 10-200 >99 [2] 
Manual work Single factor <50 30-150 / [3] 
Manual work Single factor <80 23-300 >99 [4] 
Manual work Single factor <40 104-119 / [5] 
Manual work Single factor <50 19-140 >99 [6] 
Manual work Single factor <30 16-31 ~100 [1] 

Au NCs 
Automated 
microfluid 

Double factors 160 9-22 >88 [7] 

Manual work Single factor <50 14-120 ~100 [8] 

Ag NCs 
Robotic 

automation 
Multiple factors >1200 24-200 >99 This work 
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Table S13. Summarized data of the performance of various colorimetric sensors in Hg2+ 

detection. 

 

Material 
Size 
(nm) 

Surface Ligand 
Linear Range 

(µM) 
Detection Limit 

(nM) 
Reference 

Paper-based Ag 
nanoparticles 

6-12 PVP 0.2-5 50 [9] 

Ag nanotriangles 30-40 TSC and PVP 0.01-50 4 [10] 
Au nanoparticles 13 Dithioerythritol 0.1-5 24 [11] 
Au nanoparticles 
stain hydrogels 

30-50 L-cysteine 0.2-200 3.7 [12] 

Hollow AuAg 
nanocages 

45 PVP 0.03-35 10 [13] 

Cu nanoclusters 3-5 Metallothionein 0.097-16 44 [14] 
Hollow MnFeO 

oxides 
150-200 Thioglycolic acid 0.1-15 20 [15] 

Hollow C@MoS2 
nanotubes 

100-150 L-cysteine 0.01-100 3 [16] 

Ag NCs 50 
TSC 0.01-40 3 

This work PVP 0.01-80 8 
GEL 0.1-200 35 
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Table S14. Summarized data of actual determination of Hg2+ concentration by applying the 

established approaches. 
 

No. Sample 
Actual Hg2+ 

(µM) 
Detected Hg2+ 

(µM, n=3) 
Recovery (%, n=3) RSD (%, n=3) 

1 

TSC-Ag NCs 

0.2 0.19±0.01 95.0 2.83 
2 0.4 0.38±0.02 95.0 1.67 
3 0.8 0.83±0.05 103.8 2.33 
4 2 2.05±0.11 102.5 1.78 
5 4 3.87±0.15 96.8 2.73 
6 8 7.83±0.31 97.9 2.51 
7 12 12.67±0.62 105.6 3.29 
8 24 22.91±1.21 95.5 2.95 
9 

PVP-Ag NCs 

0.3 0.31±0.02 103.3 2.98 
10 0.6 0.58±0.04 96.7 2.67 
11 3 2.93±0.19 97.7 2.33 
12 6 5.89±0.42 98.2 1.93 
13 15 15.33±1.01 102.2 2.51 
14 30 31.08±1.98 103.6 3.17 
15 50 48.57±2.51 97.1 3.06 
16 70 68.33±3.03 97.6 2.75 
17 

GEL-Ag NCs 

0.9 0.88±0.05 97.8 2.03 
18 9 8.67±0.53 96.3 1.98 
19 45 42.68±2.52 94.8 3.23 
20 90 93.23±3.98 103.6 2.67 
21 120 115.67±4.51 96.4 3.07 
22 140 133.92±5.03 95.7 3.33 
23 160 155.98±5.55 97.5 2.11 
24 180 187.33±6.48 104.1 2.73 
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Table S15. Summarized data of existing state-of-the-art practices assisted by AI. 

 

Material 
High-throughput Study with AI 

Reference Data 
Modeling 

Automated 
Synthesis 

In Situ 
Characterization 

ML 
Optimization 

Targeted 
Application 

Pharmaceuticals / ✓ / / / [17] 
Proteins / ✓ / / / [18] 

Thioquinazolinone / ✓ ✓ ✓ / [19] 
Organic mixtures / ✓ ✓ ✓ / [20] 

Organic cages / ✓ ✓ ✓ / [21] 
Metal-organic 
frameworks  

/ / / ✓ ✓ [22] 

Perovskites / ✓ ✓ ✓ ✓ [23] 
Perovskites / ✓ ✓ ✓ / [24] 

Au NCs / ✓ / ✓ / [7] 
Ag NCs ✓ ✓ ✓ ✓ ✓ This work 

✓ The work is closely related to the development of AI-based methods, which mainly serve as the technical 
means and approaches for the high-throughput study of advanced materials.  
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