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A B S T R A C T   

A novel terahertz anti-resonant fiber is designed and described. The high-resistivity silicon in the fiber mitigating 
the effective material loss and the nested double-layer U-shape tubes work together to reduce the transmission 
loss. The confinement loss and effective material loss are analyzed and optimized by the finite element method. 
The optimized fiber shows a total loss of 3.1 × 10− 3 dB/m at 1 THz and the low-loss transmission bandwidth is 
0.44 THz in the range of 0.5–1.5 THz. The influence of bending on the transmission loss is analyzed and the 
bending loss is less than 2.1 × 10− 2 dB/m at 1 THz for bending radii bigger than 60 cm. The anti-resonant fiber 
delivers excellent performance and has high commercial potential in terahertz waveguides.   

1. Introduction 

The terahertz range, also known as the terahertz gap, spans fre-
quencies from 0.1 to 10 THz corresponding to wavelengths between 30 
and 3,000 μm. Compared to electromagnetic waves in other spectral 
bands, terahertz waves have unique properties such as high trans-
mittance, security, and fingerprint capability [1] and are used in many 
applications including non-destructive imaging [2], medical examina-
tion [3], security surveillance [4], terahertz communication [5], sensing 
[6], drug testing [7], and military applications [8]. Many terahertz ap-
plications require transmission in free space, but terahertz waves 
traversing in free space are affected critically by ambient and atmo-
spheric conditions. Consequently, the transmission loss can be large thus 
restricting further development [9]. Therefore, researchers have inves-
tigated dielectric waveguides that can be used to transmit terahertz 
waves, for instance, metallic wires [10], dielectric tubes with metal 
coatings [11], sub-wavelength fibers [12], porous fibers [13], and hol-
low core fibers [14]. Among them, hollow core fibers have received 
extensive attention due to low-loss and low-dispersion transmission. 

Hollow core fibers mainly include photonic band gap fibers [15] 
(HC-PBGF) and anti-resonant fibers [16] (HC-ARF). The HC-PBGF 

utilizes the photonic bandgap effect formed by the periodic cladding to 
realize light transmission. Although the HC-PBGF can achieve low-loss 
transmission, its bandwidth is relatively limited. In comparison, the 
HC-ARF has outstanding transmission characteristics such as small 
nonlinearity, low transmission loss, negligible dispersion, as well as 
large bandwidth [17]. The mechanism is based on the anti-resonant 
effect by inhibiting coupling between the core mode and cladding 
modes for light transmission in the near-infrared, mid-infrared, and 
terahertz regimes. In the terahertz range, silica produces large trans-
mission loss and so some polymeric materials such as Topas [18], Zeo-
nex [19], PMMA [20], HDPE [21], Teflon [22], and PP [23] have been 
proposed. In particular, PMMA, Topas, and Zeonex have the advantages 
of low effective material loss and low cost [24]. V. Setti et al. have made 
a terahertz anti-resonant fiber using PMMA [25] and measured the total 
loss in the experiment, the value is 16 dB/m at 0.828 THz. G. K. M. 
Hasanuzzaman et al. have proposed and simulated a terahertz anti- 
resonant fiber consisting of nested circular tubes composed of Topas 
[26] with transmission loss lower than that of the non-nested circular 
tubes. The total loss of the fiber is 0.05 dB/m at 1 THz wherein the 
confinement loss and the effective material loss are 3.4307 × 10− 4 dB/m 
and 0.05 dB/m respectively. Moreover, the low-loss transmission 
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bandwidth is 0.4 THz. A. Mollah et al. have reported and numerically 
analyzed a terahertz anti-resonant fiber with an asymmetric cladding 
based on Zeonex [27]. The structure consisting of connecting semi- 
circular tubes and semi-elliptical tubes shows a total loss of 0.034 dB/ 
m at 1 THz, the confinement loss is on the order of 10− 4 dB/m and the 
effective material loss is 0.034 dB/m. In addition, the low-loss trans-
mission bandwidth is 0.5 THz. It is noted that the effective material loss 
of the aforementioned terahertz anti-resonant fiber is not reduced 
effectively. Hence, fibers with low effective material loss in the terahertz 
regime is crucial to the performance. J. Dai et al. have verified the use of 
high-resistivity silicon (HRS) [28] in the experiment and the material 
absorption coefficient is less than 1.5 m− 1 in the 0.1–1.5 THz range. The 
change of refractive index is only 0.0001 in the range of 0.5–4.5 THz 
with nearly zero dispersion and the low effective material loss bode well 
for photonic crystal fibers in the terahertz range [29–31]. 

Herein, high-resistivity silicon (HRS) is used to design the anti- 
resonant fiber and the nested double-layer U-shape tubular structure 
achieves low-loss transmission of terahertz waves. In the range of 
0.86–1.2 THz, the effective material loss decreases to the order of 10− 4 

dB/m. Meanwhile, the confinement loss is 2.6 × 10− 3 dB/m at 1 THz and 
the low-loss transmission bandwidth is 0.44 THz. In addition, the anti- 
resonant fiber exhibits good bending resistance as exemplified by 
bending loss of less than 2.1 × 10− 2 dB/m at 1 THz for bending radii 
greater than 60 cm. To the best of our knowledge, this novel terahertz 
anti-resonant fiber is the first one showing a total loss of less than 10− 2 

dB/m. 

2. Fiber structure 

The anti-resonant fiber is described schematically in Fig. 1. The 
cladding consists of 6 pairs of U-shape lattice tubes and each U-shape 
tube is formed by splicing a semi-circular lattice tube and two lattice 
bars. The white area is air. The core diameter is Dcore = 3 mm and the 
diameters of the outer and inner layers of the nested U-shape tubes are 
dtube = 2.5 mm and dnest = 0.9 mm, respectively. The wall thickness of 
the nested U-shape tubes is t = 0.035 mm. The thickness of the jacket 
tube is JT = 0.15 mm and overall fiber radius is R = 4.15 mm. The 
feasible schemes of manufacturing anti-resonant fiber mainly include 
stacking method, extrusion method, 3D printing fiber and 3D printing 
preform. Generally, the stacking method is feasible for the compact 
cladding tubes structure, such as Ref. [25]. The proposed nested U-shape 
tubes structure cannot be carried out by the stacking method. The 
extrusion method and 3D printing fiber can be used to fabricate shorter 
anti-resonant fiber which is less than several tens of centimeters 
[32–34]. The 3D printing preform is a promising method for anti- 
resonant fiber and has been attempted to draw hollow core fiber using 
the polymer composites with lower melting point [35,36]. It is a 

potential technology for the proposed anti-resonant fiber based on HRS 
of higher melting point in the future with the progress of the 3D printing 
preform technology. In this work, the finite element method (FEM) is 
used to analyze and optimize the anti-resonant fiber. The modeling of 
terahertz anti-resonant fiber is crucial, particularly the selection of mesh 
size is important [37,38]. We used extremely fine mesh sizes in the HRS 
walls and air regions respectively according to [37,38]. The choice of 
such mesh sizes provides excellent agreement with the experimental 
results. Since the low refractive index changing rate of the HRS material 
is in the range of 0.5–4.5 THz, the refractive index is set to have a 
constant value of 3.417 [29–31]. 

3. Results and discussion 

According to the principle of the HC-ARF, as the core mode matches 
the cladding modes, there is higher loss of the transmitted light. 
Therefore, it is necessary to compute and avoid the resonant frequency 
when designing the anti-resonant fiber, so that light can traverse the 
anti-resonant region with reduced loss. The resonant frequency can be 
calculated by Eq. (1) [39]: 

fc =
mc

2t
̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 − 1

√ (1)  

where c is the speed of light in free space, m is the resonant order 
(positive integer value), n is the refractive index of the HRS material, and 
t is the wall thickness of the nested U-shape tubes. For n = 3.417, m = 1, 
and t = 0.035 mm, 0.04 mm, 0.045 mm, and 0.05 mm, the corre-
sponding resonant frequencies fc are 1.31 THz, 1.14 THz, 1.01 THz, and 
0.91 THz, respectively. Hence, the proper wall thickness t is necessary to 
keep the resonant frequencies away from 1 THz [27]. 

3.1. Optimization of the wall thickness (t) 

Reducing the transmission loss of the fiber is the key to the HC-ARF. 
The transmission loss of the anti-resonant fiber includes mainly the 
confinement loss and effective material loss. The confinement loss, also 
known as leakage loss, refers to the power loss caused by optical field 
leakage determined by the fiber structure. The loss is intrinsic to the 
fiber and unavoidable in theory. The confinement loss can be calculated 
by Eq. (2) [39]: 

CL = 8.686
(

2πf
c

)

Im
(
neff

)
, [dB/m] (2)  

where c is the speed of light in free space, f is the operating frequency, 
and Im(neff ) is the imaginary part of the effective refractive index. Note 
that the absorption loss of air is ultra-low and can be neglected in the 
following simulations. Thus, we only take the absorption caused by HRS 
into account [40]. The effective material loss of HRS can be expressed by 
Eq. (3) [24,27]: 

EML = 4.34
̅̅̅̅̅ε0

μ0

√
∫

Amat

nαmat|E|2dA

2
∫

All
SzdA

, [dB/m] (3)  

where ε0 and μ0 are the permittivity and permeability in free space, 
respectively and n and αmat are the refractive index and material ab-
sorption coefficient of HRS, respectively. Sz is the z-component of the 
Poynting vector and can be expressed as Sz = 1

2 Re(E × H*)z, where E is 
the electric field and H is the magnetic field. 

Initially, the effect of the wall thickness t of the nested U-shape tubes 
on the loss spectra of the anti-resonant fiber is investigated. For R = 4.15 
mm, JT = 0.15 mm, Dcore = 3 mm, dtube = 2.5 mm, and dnest = 0.9 mm, 
the confinement loss spectra for different wall thicknesses are exhibited 
in Fig. 2(a). As the wall thickness t decreases, the low-loss region (less 
than10− 1 dB/m) shifts gradually towards high frequencies. The loss Fig. 1. Cross-section of the anti-resonant fiber.  
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decreases gradually and bandwidth widens. This is because a smaller 
wall thickness results in a higher resonant frequency and wider low-loss 
region [27]. When t = 0.035 mm, the low-loss region in the confinement 
loss spectra is the widest and the minimum confinement loss is 1.9 ×
10− 3 dB/m. 

The effective material loss spectra for different wall thicknesses are 
presented in Fig. 2(b). With decreasing the wall thickness t, the low-loss 
region moves gradually to the high frequency direction and the mini-
mum effective material loss is 5 × 10− 4 dB/m, which is significantly 
better those observed from other polymeric materials [25–27]. It is 
because that the effective material loss is determined by the material 
absorption coefficient according to Eq. (3). The material absorption 
coefficient of HRS is only less than 1.5 m− 1 in the 0.1–1.5 THz range 
which is much less than that of 27.6 m− 1 and 20 m− 1 for Topas [26] and 
Zeonex [27] around 1 THz. Therefore, HRS reduces the effective mate-
rial loss of the anti-resonant fiber leading to low-loss transmission. 

The total loss is the superposition of the confinement loss and 
effective material loss and in this case, mainly depends on the confine-
ment loss. The total loss spectra for different wall thicknesses are 
depicted in Fig. 2(c). As t = 0.035 mm, the anti-resonant fiber shows the 
lowest total loss of 2.4 × 10− 3 dB/m and the largest low-loss trans-
mission bandwidth (<10− 1 dB/m) of 0.44 THz. Fig. 2(d) presents the 
contour plots of the electric field of the lowest loss for different wall 
thicknesses. The light field is confined in the core region and as the wall 
thickness t decreases, the minimum loss decreases. 

3.2. Optimization of the outer and inner layer diameters (dtube and dnest) 

Next, for R = 4.15 mm, JT = 0.15 mm, Dcore = 3 mm, dnest = 0.9 mm, 

and t = 0.035 mm, the total loss spectra for different outer layer di-
ameters are shown in Fig. 3(a). As dtube changes from 1.9 mm to 2.5 mm, 
the minimum loss and low-loss bandwidth change only slightly, 
implying that the outer layer diameter has little effect on the total loss. 

Fig. 3(b) shows the confinement loss, effective material loss, and 
total loss for different outer layer diameters at 1 THz. The confinement 
loss changes slowly with increasing outer layer diameter dtube and the 
drop fluctuates. In the range of 1.7–2.7 mm, the changing rate of the 
effective material loss is only − 2.1 × 10− 5, showing that the outer layer 
diameter hardly affects the effective material loss. The solid blue line is 
the total loss and the insets show the contour plots of the electric field for 
different outer layer diameters. It can be seen that the light field is well 
confined in the core region and the total loss does not change much. In 
practice, a bigger outer layer diameter affects the flexibility of the fiber 
consequently impacting the bending resistance [26]. Therefore, the 
bending loss of x direction is calculated at 1 THz as the bending radii Rb 
is 40 cm. Considering the smaller bending loss and lowest total loss at 1 
THz, dtube = 2.5 mm is chosen as the optimal value. 

We also examine the effect of the inner layer diameter dnest of the 
nested U-shape tubes on the loss spectra. For dtube = 2.5 mm, the total 
loss spectra for different inner layer diameters are shown in Fig. 4(a). 
The inner layer diameter significantly affects the minimum loss and low- 
loss bandwidth. When the inner U-shape tube is removed (dnest = 0 mm), 
the anti-resonant fiber exhibits a bigger total loss with the smallest value 
being 2.3 × 10− 1 dB/m. At the same time, the inset of Fig. 4(b) marked 
by the red frame shows the contour plots of the electric field. It is evident 
that light leak into the cladding region and the total loss is relatively 
large. 

After adding the inner layer nested U-shape tubes, the light field is 

Fig. 2. Transmission characteristics of the structure with different wall thickness t: (a) Confinement loss, (b) Effective material loss, (c) Total loss and (d) Contour 
plots of the electric field for minimum loss. 
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well confined in the core region and the total loss decreases significantly, 
as shown in the other insets in Fig. 4(b). This is because that the inner 
layer nested U-shape tubes provide a second anti-resonant layer to 
enhance the anti-resonant effect [41]. As dnest = 0.9 mm and 1.3 mm, the 
total loss is similar, especially in the low-loss region as shown in Fig. 4 
(a). Meanwhile, Fig. 4(b) shows the confinement loss, effective material 
loss, and total loss for different inner layer diameters at 1 THz and the 
inner layer diameter has little effect on the effective material loss but 
mainly affects the confinement loss. In the range of 0–2 mm, the total 
loss decreases rapidly and then increases slowly. Based on the lowest 
total loss at 1 THz, dnest = 0.9 mm is chosen as the optimal value. 

3.3. Loss comparison for different numbers of tubes 

Furthermore, we discuss the effect of the number of the nested U- 
shape tubes on the loss spectra as illustrated in Fig. 5. For R = 4.15 mm, 
JT = 0.15 mm, Dcore = 3 mm, dtube = 2.5 mm, dnest = 0.9 mm, and t =
0.035 mm, the total loss spectrum for the four-tube structure shows a 
bigger loss, which can be explained by the contour plots of the electric 
field (black block) at 1 THz. It is evident that the light field is not 
confined in the core region. When the number of the nested U-shape 
tubes increases to five, the light field is confined in the core region. The 
six nested U-shaped tubes further enhance the anti-resonant effect and 
thus show a smaller total loss. It is because the more the number of 
tubes, the closer the adjacent tubes are and the harder for light to leak 
through the gaps [42]. Therefore, the light field is confined to the core 
region thus enabling low-loss transmission. 

3.4. Bending effect 

In practice, bending is common and inevitably increases the loss. 
Hence, controlling the bending loss of anti-resonant fibers is important. 
To calculate the bending loss, we use a conformal transformation 
method to modify the refractive index of an equivalent straight fiber as 
shown by Eq. (4) [43,44]: 

Fig. 3. Effect of the outer layer diameter dtube on loss: (a) Total loss versus frequencies and (b) Loss and bending loss for different outer layer diameters for f = 1 THz.  

Fig. 4. Effect of the inner layer diameter dnest on loss: (a) Total loss versus frequencies and (b) Loss for different inner layer diameters at f = 1 THz.  

Fig. 5. Total loss for different numbers of tubes.  
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neq = ne
u

Rb (4)  

where Rb is the bending radius, u is the bending direction of the fiber (x 
or y), n is the refractive index of the straight fiber, and neq is the 
equivalent refractive index of the fiber after bending. The bending loss 
can be calculated by taking the neq into Eq. (2). 

Finally, the bending loss of the proposed anti-resonant fiber is 
studied. Fig. 6(a) shows the bending loss spectra of x direction for 
different bending radii. The minimum loss increases with decreasing 
bending radius Rb and the low-loss bandwidth also decreases. For the 
bending radius Rb = 30 cm, there is almost no low-loss region in the 
entire terahertz range and almost all the bending loss is larger than 10− 1 

dB/m. This is because the symmetrical structure of the anti-resonant 
fiber is destroyed by bending. Consequently, the refractive index pro-
file is distorted and the confinement loss enhances compared to a 
straight fiber [9]. To further study the bending performance of the anti- 
resonant fiber, we analyze the bending loss of x direction for different 
bending radii at 1 THz as shown in Fig. 6(b). When the bending radius is 
relatively large, the light field is confined in the core as shown in the 
insets (green and purple blocks). Although bending causes the light field 
to be off-center, it does not result in obvious leakage and so the bending 
loss is relatively small. The anti-resonant fiber shows good bending 
resistance. As the bending radius Rb decreases, the bending loss in-
creases gradually and appears extra loss peak with 1.6 × 101 dB/m as Rb 
= 30 cm. The extra loss is due to the resonances between the core mode 
and cladding modes when the modes are phase matched [25] as shown 
in the blue inset. 

Similarly, the bending loss spectra of y direction are shown in Fig. 6 
(c). Compared with the loss spectra of x direction, the low-loss band-
width and the minimum loss exhibit same change trend with changing 
bending radiusRb. The bending loss of y direction is a little bigger than 

that of x direction at 1 THz as shown in Fig. 6(d), but still maintained at a 
lower level. Compared to Ref [9], this anti-resonant fiber has better and 
more robust transmission characteristics. 

4. Conclusion 

An anti-resonant fiber composed of nested double-layer U-shape 
tubes constructed with high-resistivity silicon is designed and analyzed. 
The high-resistivity silicon mitigates the effective material loss in the 
terahertz regime. By optimizing the structure, the anti-resonant fiber 
exhibits extremely low total loss and relatively large low-loss bandwidth 
in the range of 0.5–1.5 THz. The total loss is 3.1 × 10− 3 dB/m at 1 THz 
and the low-loss transmission bandwidth is 0.44 THz. Furthermore, the 
fiber shows excellent bending resistance with bending loss of less than 
2.1 × 10− 2 dB/m at 1 THz for bending radii greater than 60 cm. The 
excellent properties suggest that the anti-resonant fiber has large po-
tential in terahertz waveguides. 
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