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A B S T R A C T   

Hexagonal boron nitride (h-BN) as a type of two-dimensional (2D) materials has gained significant attention in 
green energy applications recently. In the past, h-BN has mainly been regarded as inert materials because of the 
poor conductivity and is mainly used commercially as insulators. However, recent advances in materials science 
and nanotechnology have unveiled exciting applications of h-BN by taking advantage of the unique chemical and 
electrochemical properties, high thermal stability, as well as environmental friendliness. In the energy field, h-BN 
has not been researched as extensively as other 2D materials such as graphene and there have been few 
comprehensive reviews discussing the various aspects of the materials and applications. The objective of this 
review is to summarize recent results and applications of this unique class of materials and to provide guidance to 
future research and development of green energy systems based on h-BN. We first describe the physical and 
chemical modification strategies to convert insulating h-BN into the desirable conductive materials suitable for 
energy conversion. In addition to functionalization strategies, different synthetic methods and important prop
erties of h-BN are reviewed. We then describe recent progress and applications of h-BN as electrocatalysts in 
energy applications, including the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), oxygen 
evolution reaction (OER), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). 
The electrocatalytic mechanisms and impact on the materials performance are discussed and finally, the chal
lenges and prospects for modified h-BN in the energy conversion field are discussed.   

1. Introduction 

Heterogeneous electrocatalysis, which a critical process in 
rechargeable batteries, electrochemical water splitting, and fuel cells, is 
an important technology to produce sustainable energy and mitigate the 
society’s dependence on fossil fuels [1]. Electrocatalysis, a process in 
which electrochemical reactions on the electrode surfaces are acceler
ated, must be well understood, especially the fundamental mechanisms 
and principles, in order to benefit next-generation energy systems [2–7]. 
The carbon cycle, nitrogen cycle, and water cycle are the three main 
energy cycles in electrolysis and are essential to energy-related appli
cations [8–10]. For example, the anodic hydrogen oxidation reaction 
(HOR) and cathodic oxygen reduction reaction (ORR) take place in 
H2/O2 fuel cells to release water and electrical energy, respectively. In 

comparison, in water splitting or electrolysis, water molecules are 
dissociated into hydrogen and oxygen via the hydrogen evolution re
action (HER) and oxygen evolution reaction (OER) [3,11]. In fuel cells, 
the electrolyzing units can be combined to form single units, referred to 
as regenerating fuel cells, which have promising potential in trans
portation applications. Organic compounds containing carbon such as 
formic acid, methanol, ethanol, and dimethyl ether may be utilized 
directly as fuels in fuel cells to produce carbon dioxide, water, and 
electricity. Carbon dioxide can be reduced by the CO2 reduction reaction 
(CO2RR) and converted by electrochemical reactions into value-adding 
fuel products such as methanol, methane, and ethanol [12–14]. 

Electrocatalytic techniques can also be utilized to convert biomass- 
derived chemical compounds such as glycerol, furan, and 5-hydroxy
methyl-2-furfural into value-added products. In the nitrogen cycle, 
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nitrogen fixation proceeds by the nitrogen reduction reaction (NRR) can 
be performed electrolytically under ambient conditions to produce 
ammonia to serve as the energy source in ammonia fuel cells [15]. 
Generally, rechargeable metal-air batteries, also referred to as metal-air 
fuel cells, can be prepared by ORR/OER (discharging/charging) 
methods [16,17]. All these technologies have one thing in common. 
That is, they all require high-performance electrocatalysts on the elec
trodes. Generally, the desirable electrocatalyst should have a large 
exposed surface area, excellent electrical conductance, and long-term 
durability. The performance of electrodes is determined mainly by the 
physicochemical characteristics of the electrocatalyst and 
electrode-electrolyte interface [6,8] and the functional life cycle of an 
electrocatalytic cell depends on the durability of the electrocatalysts. 
Unfortunately, common Pt-based electrocatalysts tend to have a limited 
operating lifetime in ORR due to the low tolerance to byproducts such as 
CO/methanol [7]. As a result, the development of next-generation and 
high-performance electrocatalysts is vital to energy applications. 

Although noble metals and their derived transition metals-based 
materials are commonly used in energy conversion and storage tech
nologies, the high disposal and recycling cost as well as environmental 
impact limit large-scale commercial implementation. Therefore, there 
have been substantial research activities in developing efficient, stable, 
environmentally safe, and cost-effective catalytic materials [5]. Since 
Novoselov and Geim demonstrated separation of graphene from 
graphite in 2004 [18], graphene and other two-dimensional (2D) ma
terials have attracted enormous research interests on account of the 
intriguing low dimensional structure, strong charge transferability, 
large specific surface area, low density, and optical and electrical 
anisotropy [19–26]. Owing to the large charging/discharging rates and 
robust cycle durability, emerging 2D materials such as graphene and 
transition metal dichalcogenides (TMDs) offer many benefits in sus
tainable renewable energy conversion and storage applications [27]. 
Recent studies on hexagonal boron nitride (h-BN) also reveal that it is an 
interesting class of 2D materials for energy applications [28–30]. 

h-BN has a bulk crystal structure similar to graphite and the isolated 
layer of h-BN is almost analogous to graphene with the 2D honeycomb- 
like configuration. However, despite the structural similarity, the elec
trical properties of these two types of 2D materials differ significantly. 
Graphene has a zero bandgap, but the h-BN monolayer has a wide 
bandgap of 5.97 eV. h-BN is an insulating isomorph of graphite, in which 
the B and N atoms exhibit the Bernal arrangement. The boron and ni
trogen atoms have different on-site energies resulting in a large bandgap 
(5.97 eV) and slight (1.7%) lattice difference compared to graphite 
[31–33]. In reality, BN as an insulator does not have significant elec
trochemical activity because of the wide bandgap. Nonetheless, h-BN 
has sparked significant scientific interests because of its superior thermal 
and chemical stability, high thermal conductivity, superior optoelec
tronic characteristics, and inherent electrical insulation [33,34]. For 
example, Ng et al. [35] have reported that the BN/CF/PBT hybrid shows 
reduced electrical conductivity and BN can be used in electrically 
resistive junctions to condense electrons to enhance the tensile proper
ties and processing capability. Although h-BN is electrically insulating, 
there have been efforts to convert h-BN into an electrical conductor in 
order to expand the applications. For instance, heteroatom doping and 
functional group grafting are effective techniques. Depending on the 
dopants and functional groups (CN, NH2, F, H, OH, CHO, CH3, etc.), the 
bandgap of h-BN can be reduced theoretically [5]. Another method is 
edge hydroxylation which is a powerful functionalization method by 
reacting h-BN with hot steam to improve catalytic oxidative dehydro
genation of alkanes [36,37]. h-BN has also gained significant attention 
in HER and ORR by introducing defects such as B/N vacancies and im
purities, and the materials can be modified by hydrogen decoration 
[38–41]. Single- and multi-layered h-BN nanosheets have been proposed 
for demanding applications such as dielectric tunneling [42], biomedi
cine [20,43], DUV photonic devices [44], power devices [45], fuel cells 
[46], and electronic packaging [47]. 

In spite of the tremendous potential of h-BN, there are still many 
undiscovered aspects of h-BN hybrids and comprehensive studies have 
also been relatively rare. Consequently, the lack of a good understanding 
has impeded the development of h-BN heterostructures in the energy 
fields especially in electrocatalysis. Herein, we review recent advances 
of h-BN and our objective is to provide comprehensive information 
concerning the latest development of BN-based electrocatalysts and h- 
BN heterojunctions to guide future research and development of this 
important class of materials. The various synthesis and functionalization 
methods to convert h-BN into a conductor are described and the role of 
h-BN in heterostructured electrocatalysts, theoretical simulation, and 
potential electrocatalytic energy applications are discussed with the 
focus on the important reactions of ORR, HER, OER, CO2RR, and NRR 
(Fig. 1). Finally, we present the prospective, main challenges, opportu
nities, and future research directions. 

2. Boron nitride 

2.1. Physical properties 

BN was first synthesized by Balmain in 1842 with potassium cyanide 
(KCN) and molten boric acid (H3BO3). It has the same crystal structure 
as carbon and shows a variety of crystalline structures such as hexagonal 
BN (h-BN), cubic BN (c-BN), and wurtzite BN (w-BN). Reports on BN 
characterization date all the way back to 1911 [48–50] and the physical 
and structural characteristics of h-BN were studied even before c-BN and 

Fig. 1. Common strategies to engineer BN-based electrocatalysts for ORR, 
HER/OER, CO2RR, and NRR. 

Table 1 
Summary of some of the important structural and physical properties of h-, c-, 
and w-BN.  

Properties h-BN c-BN w-BN 

Structure hexagonal zinc 
blende 

lonsdalite 

Space group P63/mmc F ˉ43m P63mc 
Lattice parameter (Å) a = 2.5043, c 

= 6.6562 
a = 3.615 a = 2.55, c 

= 4.17 
Bond length (Å) 1.44 1.57 1.55 
Density (g cm-3) 2.20 3.45 3.48 
Thermal conductivity (W 

cm-1 K-1) 
2.35 in-plane 12 –  

2.3 × 10-2 out of 
plane   

Hardness (kg mm-2) – 4500 3400 
Bulk modulus (Gpa) 36.5 369–400 390, 375 
Standard molar volume 

(cm3 mol-1) 
10.892 7.1183 7.145  
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w-BN, which were prepared in 1957 [51] and 1963 [52], respectively. 
Owing to the similarities with graphene, h-BN is also known as “white 
graphene”. c-BN is the second hardest substance after diamond and has a 
structure resembling that of the diamond. w-BN is related to lonsdaleite 
(lonsdaleite, also called hexagonal diamond due to its crystal structure) 
[53] and a summary of the physical properties of h-, c-, and w-BN is 
presented in Table 1 [49,54,55]. Among the three BN phases (Fig. 2), 
h-BN with the sp2-hybridized 2D structure is considered the most stable 
phase under standard conditions and the 2D layers are held together by 
weak Van der Waals forces. The layered h-BN structure has an interlayer 
distance of 3.33 Å and a lattice constant of 2.50 Å [56]. However, unlike 
graphene, h-BN is an insulator with a thickness-dependent bandgap. 
h-BN nanosheets have been used mainly as dielectric substrates for 
graphene and MoS2-based heterostructures in electronic and optical 
devices [57,58]. By means of electronic and structural modification, 
h-BN possess many favorable properties such as small cytotoxicity, large 
surface area, abundant active sites, good thermal stability, outstanding 
mechanical strength, and high electrical conductivity [59]. Neverthe
less, pristine h-BN has low electrocatalytic activity due to the low con
ductivity and as a result, various physio/chemical procedures have been 
proposed to convert h-BN into semi-conducting or conducting materials. 
For example, Uosaki and coworkers have tuned the electronic properties 
of h-BN by combining with Au NPs and the electrocatalyst delivers 
improved ORR performance mainly because of activation of adsorbed O2 
and high selectivity in the associative pathway [38,60]. The exceptional 

properties of h-BN render it exciting materials in many applications 
[48–50, 61]. In this review, leaving aside c-BN and w-BN, our focus is 
the current progress of 2D h-BN including fabrication techniques and 
applications in electrochemical energy conversion. 

2.2. Two-dimensional hexagonal boron nitride 

2.2.1. Structure of 2D h-BN 
Analogous to graphite, h-BN is a white slippery powder with a 

honeycomb structure in which the B and N atoms are sp2 hybridized and 
Van der Waals forces hold the layers together [62]. The B-N bond has 
ionic features with a length of 0.144 nm (0.142 nm in graphite) [63] and 
the space between the centers of adjacent hexagonal rings is 0.25 nm 
(0.246 nm in graphene) (Fig. 3A). To satisfy the “lip-lip” interactions in 
individual BN layers [64] (referred to as electrostatic or polar-polar 
interactions), h-BN has AA stacking in which the adjacent hexagon 
rings are superposed with B and N atoms alternatively located along the 
c axis. In contrast, graphite has the AB stacking in which each layer is 
shifted by half a hexagon with C atoms always located at the center of 
the hexagon [61,65]. Although the AA stacking is intrinsic to bulk h-BN, 
it may be converted to AB stacking when the top and bottom layers of 
the layered structure are made to slide slightly by sonication [66,67]. 
According to density-functional theory (DFT) calculation, free sliding is 
associated with bandgap modulation of ~0.6 eV [67]. Compared to 
graphitic C-C bonds, B-N bonds show combined ionic and covalent 

Fig. 2. Crystal structures: (A) Cubic, (B) Wurtzite, and (C) Hexagonal BN. Reproduced with permission [49]. Copyright 2017, John Wiley and Sons.  

Fig. 3. (A) Crystal structure of h-BN. Reproduced with permission [72]. (B) TEM image of the BNNS. (C) TEM images showing three sheets containing 3, 4, and 5 
layers of BN. (D) HR-TEM image of the BN sheet. (E) Electron diffraction pattern from a large number of milled sheets. Reproduced with permission [69]. Copyright 
2011, The Royal Society of Chemistry. 
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characteristics due to the disparity in the electronegativity between B 
and N atoms. This can result in “lip-lip” interactions among layers [19], 
which stabilize the growth of open-ended BN nanotubes (BNNTs) by 
forming bridges between consecutive shells to evolve into a metastable 
energy minimum analogous to the formation of carbon nanotubes 
(CNTs). TEM (Fig. 3B and C) reveals exposed organized layers and 
atomic configurations in the h-BN nanotubes (h-BNNTs) -BNNSs 
[68–70]. As shown in Fig. 3D, the high-resolution TEM (HR-TEM) image 
shows the hexagonal atomic arrangement in the BN sheets with a 
0.25 nm interplanar distance associated with the (100) and similar 
planes. Fig. 3E displays well-defined (100) diffraction spots with 
excellent AA layer stacking [69]. However, owing to layer rotation or 
disordered layer stacking, the dispersed regions with a circle indicate 
deterioration in the h-BNNS quality [71]. 

2.2.2. Synthesis of 2D h-BN 
It has been reported that h-BN cannot undergo proper functionali

zation in its bulk form because of the small specific surface area and 
porosity. Zhu et al. [73] have compared the surface areas of BNNS and 
bulk h-BN (278 m2 g-1 for BNNS and 10 m2 g-1 for bulk h-BN). Herman 
et al. have prepared BNNTs with a larger surface area (97 m2 g-1) than 
bulk h-BN (16 m2 g-1) [74,75], and Chen et al. [76] have also reported 
crystalline h-BNNS with high purity, large surface area, as well as high 
thermal stability. Most research activities have focused on the synthesis 
methods of h-BN with the 2D structure, especially h-BNNS and h-BN 
layers with a large area, regulated thickness, and high quality. Most of 
the fabrication strategies are similar to those of carbon materials with 
slight modification. The thickness of BN nanosheets is limited to the 
nanoscale, whereas the other two dimensions are infinite. To date, BNNS 
is prepared by two main methods: top-down exfoliation and bottom-up 
growth. The fundamental process in the top-down technique is exfolia
tion of excess h-BN by eliminating the Van der Waals interactions, a 
process termed mechanical or chemical/liquid exfoliation [77,78]. In 
comparison, bottom-up techniques for BNNSs are categorized as 
substrate-dependent or substrate-free such as CVD, pyrolysis, or 

hydro/solvothermal methods. 

2.2.2.1. Mechanical exfoliation. In 2004, the mechanical exfoliation 
method employing scotch tape was used to isolate graphene [18] and it 
has since been widely adopted for other 2D materials such as h-BN [79] 
and MoS2 [80]. Van der Waals coupling between neighboring layers in 
h-BN is destroyed by mechanical exfoliation with the sticky tape due to 
the strong peeling force. This process produces 2D h-BN with fewer 
defects than chemical approaches to allow for investigation of the 
fundamental characteristics and exploration of a wide range of appli
cations in electronics and optoelectronics [77]. Mechanical exfoliation 
involves micromechanical cleavage [77,81] and ball milling [69,82], 
both of which rely on shear forces to exfoliate bulk h-BN to form 
few-layer sheets. 

The solid covalent bond in the B–N structure remains. However, this 
approach is inefficient for the synthesis of h-BN due to lip-lip in
teractions among BN planes [83]. The mechanical exfoliation yield is 
poor due to the more substantial contact between BN basal planes [84, 
85]. Li et al. [69] have proposed a precise ball milling method to 
fabricate h-BN with gentle shear forces instead of using direct peeling by 
optimizing the ball milling conditions in the N2 atmosphere. This 
approach produces h-BN efficiently while causing slight structural 
destruction. Fig. 4A displays the SEM images of two intermediate phases 
of the peeled h-BNs as well as the predicted exfoliation pathway under 
the milling shear stress. Because the modest shear force created during 
milling causes minor destruction to the structure, several aspects are 
considered to ensure effective mechanical milling: (i) A ball mill with a 
regulated rolling action is preferable, (ii) a smaller milling area to 
enhance the actions, and (iii) the use of an adequate liquid solvent 
during milling to prevent the welding effect [20]. To further optimize 
the fabrication of h-BN nanosheets, low-energy ball milling and 
low-power sonication are implemented. The h-BN powder is milled with 
surfactants using zirconia balls and then sonicated by a low-power 
process [86]. Yao et al. [87] have exfoliated h-BN using sodium 
dodecyl sulfate (SDS) in an aqueous solution to produce mono- and 

Fig. 4. (A) SEM images and diagrams showing 
the two exfoliating pathways in ball milling. 
Reproduced with permission [69]. Copyright 
2011, The Royal Society of Chemistry. (B) 
Sonication causing scission-induced exfoliation 
and vibration-induced exfoliation. (C) Exfolia
tion of 2D nanosheets by the shear force in 
low-energy ball milling. (D) BNNS dispersion in 
SDS–water. (E) TEM image of folded BNNSs. 
Reproduced with permission [87]. Copyright 
2012, The Royal Society of Chemistry. (F) TEM 
(left) and HR-TEM (right) images of BNNS 
exfoliated by ultra-sonication of BN powders in 
N, N-dimethylformamide. Reproduced with 
permission [89]. Copyright 2009, John Wiley 
and Sons. (G) h-BN dispersions in the etha
nol/water mixtures. (H) Estimated Ra values 
presented as solid lines and absorbance of the 
BN suspensions in ethanol/water shown as dots 
(right). Reproduced with permission [90]. 
Copyright 2011, John Wiley and Sons. (I) BNNS 
suspension exfoliated in the PEI-isopropanol 
mixture (left), thionyl chloride (middle), and 
recovered and re-dispersed in acetic acid 
(right). The bottom image shows the BN film 
modified with BNNS from exfoliation in 
PEI-isopropanol mixture. Reproduced with 
permission [91]. Copyright 2017, Springer 
Nature.   
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multi-layer BNNSs with a quantity of about 1.2 mg mL-1 together with 
robust stability (Fig. 4B-4E). Besides the liquid phase, solid phases have 
been reported. Liu et al. [88] have proposed a solid exfoliation pro
cedure to generate BNNS, in which the h-BN powder and ammonia 
borane (NH3BH3) are milled together. NH3BH3 adsorbs easily onto h-BN, 
thus reducing the dehydrogenation temperature and Van der Waals 
force during milling, resulting in good exfoliation and production effi
ciency for the h-BN nanosheets. All in all, mechanical exfoliation is the 
most efficient technique to generate h-BNNS, although the relatively 
tiny flake size restricts its use in large-area applications. 

2.2.2.2. Liquid/chemical exfoliation. Exfoliation may also be performed 
by exploiting the volume expansion effects produced by in situ physical 
or chemical reactions between h-BN layers. Chemical exfoliation is 
mainly dependent on ultrasonication and surface tension of the organic 
solvents to overcome interlayered Van der Walls interactions with the 
aid of solvent stabilization (Fig. 4F) [89, 92–94]. Han et al. [95] have 
introduced the chemical exfoliation method to exfoliate mono- and 
multi-layer h-BNNSs, in which 0.2 mg of h-BN particles are 
ultrasonicated in 5 mL of the 1,2-dichloroethane solution of poly 
(m-phenyl-enevinylene-co-2,5-dictoxy-p-phenylenevinylene) to dis 
solve and reduce Van der Waals forces between h-BN layers. As chemical 

exfoliation takes place in a liquid, it is solvent-based exfoliation and 
the Coleman’s Hansen solubility parameter (HSP) theory is used to study 
the functions of several solvents by verifying the polarity, hydrogen 
bonding, and interconnected energy densities so as to reduce the 
exfoliation energy or form robust and adequate surface tension 
(e.g., ɤ 40 mJ m-2) [96]. Isopropyl alcohol (IPA) is a valuable solvent in 
h-BN exfoliation, producing 50% yield in the dispersions (0.06 mg mL-1 

BNNS). According to the HSP theory, the mixed solvent approach is 
established by comparing the HSP space and Ra value of the various 
solvent compositions. For instance, Zhou et al. [90] have employed 
two weak solvents (water and ethanol) to exfoliate h-BN and obtained 
a "milky" h-BN nanosheet solution with a quantity of 
0.075 ± 0.003 mg mL-1, that is 37 times the concentration of exfoliated 
in IPA as shown in Fig. 4G-4H. Cao et al. [97] have proposed a mixed 
solvent sonication method with ammonia and IPA and the Lewis base 
characteristics of ammonia assists exfoliation (low boiling point and 
surface tension of 57 mJ m-2). BNNS has also been exfoliated by electric 
field-assisted liquid exfoliation [98], molten hydroxides [99], micro
wave irradiation-assisted exfoliation [19], magnetic stirring-assisted 
ultrasonication technique [100], and layer-by-layer etching and irradi
ation with an electron beam [101,102]. The h-BNNS synthesized by 
these approaches are often unstable, lack morphological uniformity, 

Fig. 5. (A) Schematic illustration of the CVD method to prepare h-BN on the Fe foil using a borazine precursor. (B) and (C) Cross-sectional TEM images of a multi- 
layered h-BN sheet grown on the Fe foil. Reproduced with permission [107]. Copyright 2015, Springer Nature. (D) SEM images of h-BN generated with argon as the 
buffer gas at 1065 ◦C and sketches of the resultant h-BN crystal on the bottom with blue representing nitrogen and red for boron. Reproduced with permission [117]. 
Copyright 2015, American Chemical Society. (E) Formation mechanism based on self-bubbling of B-N-H polymers during dehydrogenation into the nanostructure 
thin walls, where AB stands for ammonia borane, PAB stands for polymeric aminoborane, and PIB is polyiminoborane. Reproduced with permission [122]. Copyright 
2011 John Wiley and Sons. (F) Schematic diagram of catalyst preparation by the hydro/solvothermal method. (G) and (H) SEM images of the BN-GQD/G nano
composite. Reproduced with permission [123]. Copyright 2014, American Chemical Society. 
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include impurities, and require lengthy washing and post-treatment 
steps [103]. Ma et al. [104] have reported that the BNNS solution 
starts to aggregate within 12 h after dispersion and aggregates 
completely after three days. Therefore, it is critical to modify the surface 
of BNNSs to produce a stable and uniform BNNS dispersion. Anderson 
et al. [91] have also studied the uniform dispersion ability of exfoliated 
BNNSs in several solvent systems under different conditions (Fig. 4I). All 
in all, despite these disadvantages, chemical techniques are easy and 
suitable for large-scale synthesis compared to mechanical exfoliation 
[105]. 

2.2.2.3. Chemical vapor deposition. The bottom-up growth of BNNSs 

may be characterized as substrate-dependent and substrate-free. The 
substrate-dependent ones are typically carried out by chemical vapor 
deposition (CVD) which is a cost-effective approach to produce high- 
quality h-BNNS with a regulated atomic thickness and minimal impu
rities [106–108]. 2D materials are often grown on a substrate by this 
method and the intrinsic properties of the as-grown materials and in
teractions between two adjacent layers can be studied. In 1990, the first 
h-BN monolayer was obtained by decomposing B3N3H6 on transition 
metals such as Pt (111) and Ru (0001) [109]. The typical CVD technique 
involves one or more volatile chemicals/sources that react and disso
ciate on the surface of the substrate to produce the coating. h-BN is 
commonly obtained from metal salts and organic precursors, e.g., 

Fig. 6. (A) and (B) h-BNNS with the B vacancy and N terminated edge on the left side and with the N vacancy and B terminated edge on the right side. (C) HR-STEM 
image of vacancies containing h-BNNS highlighted with boxes (Scale bar = 2 nm). (D) CO oxidation light-off curves for the Pt/h-BNNS, Pt/bulk h-BN, Pt/TiO2, Pt/ 
SiO2 and Pt/C, m(catalyst) = 30 mg, CO flow rate 10 mL min-1. Reproduced with permission [147]. Copyright 2017, Springer Nature. (E) Band structures of the 
BCN-based samples. Reproduced with permission [148]. Copyright 2015, Springer Nature. (F) Dependence of the bandgap on the embedded oxygen content (random 
doping mode) in the infinite h-BN monolayer. Reproduced with permission [149]. Copyright 2017, John Wiley and Sons. 
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ammonia borane, boron trichloride, borazine, ammonia, and nitrogen, 
on transition metals such as Cu [110], Ni [111,112], Ag [113], Au [114], 
and Ru [115] as substrates. The TM substances act as catalysts and 
transform the precursors to form the h-BN monolayer. After the sub
strate is coated with h-BN, there is no more degradation of the precursor 
and the process turns into a self-limiting one [49]. Theoretical studies 
and experimental evidence indicate that 2D h-BN layers formed on 3d 
and 5d TMs are weakly attached to the metal support. However, in 
4d-TMs, the h-BN-surface binding energy increases in proportion to the 
number of vacant states in the substrate of the d-shell. One of the con
cerns in controlling the thickness of the h-BN film is the solubility of 
boron and nitrogen atoms in the adsorbent. For instance, a monolayer 
h-BN film may be formed on a Cu substrate by taking advantage of the 
low solubility of boron and nitrogen atoms [116] and a multilayer h-BN 
film can be formed on an iron substrate by taking advantage of the 
limited solid solubility of boron and nitrogen atoms (Fig. 5 A-5C) [107]. 
By altering the growth conditions, h-BNs with different shapes such as 
triangular, asymmetric diamond, or hexagonal may be obtained. For 
example, Stehle et al. [117] have reported that by changing the per
centage of boron to nitrogen on the Cu surface, triangular, truncated 
triangular, and hexagonal h-BN can be formed (Fig. 5D). Ji et al. have 
also observed spontaneous structure evolution of monolayer h-BN 
formed by CVD on a Cu foil [118], and h-BN sheets have been deposited 
by CVD methods such as microwave plasma CVD [119] and 
catalyst-assisted CVD [120]. The template-assisted CVD route described 
by Shelimov and Moskovits is considered to be superior to other CVD 
methods due to the formation of layered nanostructures with high pre
cision and excellent crystallinity [121]. Unlike powder h-BNNS, CVD 
produces h-BNNS covalently bound to metallic surfaces thus requiring 
transfer techniques and as a result, h-BNNS synthesized by this method 
requires functionalization and post processing [5]. 

2.2.2.4. Pyrolysis. Pyrolysis is another bottom-up strategy to increase 
the yield of h-BN nanosheets by combining boric and nitride precursors 
and heating to a high temperature. Nag et al. have synthesized multi
layered BN sheets by mixing urea and boric acid at 900 ◦C [124]. The 
h-BN nanosheets formed with a significant proportion of urea are pre
dominantly 2–3 layers thick. The surface area of BN increases as the 
layer thickness decreases. This method often employs low-cost B- and 
N-containing chemicals including melamine, boric acid, boron oxide, 
and urea [125–127]. The unique BN micro or nanostructures may be 
constructed by changing the B or N sources [128]. Owing to the for
mation of gaseous products like CO2, CO, and NH3, this approach may 
produce porous h-BNNSs and the production of porous structures with a 
large surface area involves the use of a hard template rather than py
rolysis. Weng et al. have synthesized porous BN micro-sponges with a 
large BET surface area of 1900 m2 g-1 by varying the urea and boric acid 
molar ratios and synthesis temperature [129]. Apart from the techniques 
mentioned previously, several other techniques for the fabrication of 
h-BN nanomaterials have been proposed, for instance, chemical blowing 
(Fig. 5E) [122], biomass-directed carbothermal synthesis [130], 
hydro/solvothermal method (Fig. 5F-H) [123], pulsed laser deposition 
[131–133], electrodeposition [134–136], electrospinning method 
[137], and plasma-arc method [138,139]. Most of these processes need a 
large amount of input energy (>2000 ◦C) and so have not been studied 
as extensively as other techniques. 

3. Functionalization of 2D h-BN 

Pristine h-BN has no electrocatalytic activity and therefore, physical 
and chemical techniques must be implemented to change h-BN to a 
conductor. Lyalin et al. have reported exfoliation or functionalization to 
tailor the nanoscale structure, size, and morphology [140]. 

3.1. Defect engineering and metal doping 

In the preparation of 2D h-BN, defects such as grain boundaries, 
vacancies, and distorted edges are created and these defects affect the 
properties of the materials and devices. Theoretically, the B vacancy is 
more thermodynamically favorable because of the smaller formation 
energy compared to the N vacancy [141]. Chemical activation of the BN 
monolayer increases significantly on account of these defect sites, which 
can be further amplified by doping the defects with metal atoms 
[142–144]. Although defect-free BN sheets have poor interactions with 
the deposited metal atoms due to their chemical inertness, the defective 
BN sheet may function as a template to produce advanced catalysts by 
metal doping. For example, metallic atoms such as Co [145], Fe [145], 
Ru [146], and Cu [142] have been incorporated into BN sheets to pro
duce promising catalysts for CO oxidation. Zhu et al. have prepared 
vacancy-abundant h-BNNS doped with Pt NPs for CO oxidation by tak
ing advantage of the electronic effects on Pt caused by the nanosheets 
with N and B vacancies (Fig. 6A-6D) [147]. 

3.2. Carbon and oxygen doping 

Carbon being naturally abundant is the most common dopant to 
modify h-BN nanostructures. Chen et al. have proposed a simple py
rolysis method to generate carbon-doped h-BN porous materials by 
heating the mixture of melamine and boric acid under Ar to 800 ◦C and 
the catalyst has excellent CO2 adsorption capability in contrast to pure 
h-BN [150]. Modification of h-BN with carbon changes the bandgap 
from 5.9 eV to 2.6 eV and is promising for non-metal photocatalysts. 
Huang et al. [148] have adjusted the bandgap of h-BN by adding the 
appropriate amount of carbon to create a ternary B-C-N hybrid which is 
active not only in overall water splitting but also in CO2 reduction 
(Fig. 6E). Besides carbon doping, h-BNNS doped with oxygen has been 
studied. Weng et al. have synthesized oxygen-doped h-BNNS by a 
thermal reaction under ammonia at 1000 ◦C using boric acid and 
hexamethylenetetramine. The yellow h-BN catalyst has a reduced 
bandgap of 2.1 eV for a minimum oxygen doping concentration of 
23.1 at% (Fig. 6F) [149]. Co-doping with carbon and oxygen may 
improve the surface, optical, and electronic properties of h-BN to pro
duce exciting gas sorption, fluorescence, and electrochemical energy 
storage characteristics and applications [5,151]. In addition to defects 
and atomic doping, alloying and hybridization have been proven to be 
effective in changing the electronic structures of the materials. 

3.3. Pyrolysis and hybridization 

Compared to other modification methods in which functionalization 
is normally performed at edge or defect sites [82,92], pyrolysis can 
generate homogeneous heteroatom doping and produce more changes 
in the materials. When different types of 2D materials are combined, the 
structures may consist of a myriad of heterostructures and superlattices 
and by introducing multiple bandgaps in the heterojunctions, quantum 
wells satisfying the conditions for charge flow can be prepared [152, 
153]. The heterostructures also facilitate the formation of defects to 
improve the dispersion of charge carriers and the electrochemical ac
tivity by using free electrons [154]. Furthermore, the electrocatalytic 
activity of h-BN can be tuned by combining the dz2 metal orbitals with 
the N-pz and B-pz orbitals of h-BN in the electronic interactions with the 
underlying metal substrate [155,156]. The BN nanosheets with unique 
properties have applications as spacers, protectors for tunneling sys
tems, transistors [157,158], deep ultraviolet luminescence [159,160], 
solid-state lubrication [161], and electrocatalysts in energy conversion 
devices [46,162]. In the following section, important electrocatalytic 
applications of h-BN-based heterojunctions for energy conversion 
including ORR, HER, OER, CO2RR, and NRR are discussed. 
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4. Applications of 2D h-BN 

4.1. Oxygen reduction reaction 

Fuel cells (FCs) are mainly used as a power source in long-term ap
plications and ORR regulates the functioning of fuel cells and metal-air 
batteries [38,162,163]. Thermodynamically, fuel cell degradation is 
analogous to ORR due to the production of water (H2O) or hydrogen 
peroxide (H2O2) on the cathode of PEM fuel cells [164], but this problem 
may be addressed by employing an appropriate catalyst [165]. Nor
mally, there are two mechanisms in ORR: (1) 4 electron reduction 
(dissociative route) of O2 to H2O in acidic media or OH- in basic media 

and (2) 2 electron reduction (associative route) of O2 to H2O2 in acidic 
media or HO2

- in basic media [9]. In addition to possessing fewer elec
trons per O2 molecule, H2O2 is highly corrosive when it decomposes into 
free radicals such as OH• and OOH•. Pt is considered the ideal ORR 
catalyst for effective adsorption and reduction of molecular O2 via the 
two- or four-electron mechanism. However, large-scale production is 
still hampered by the high cost of noble metals, time-dependent drift, 
fuel cross-over effect, and CO deactivation and more economical 
non-metal-based catalysts are demanded for ORR [7,166,167]. 

The underlying mechanism of metal-free ORR electrocatalysis has 
been studied experimentally and theoretically [7,9,168,169]. Uosaki 
et al. have observed that h-BNNS loaded onto the Au surface is an active 

Fig. 7. Spin-polarized DOS calculation of (A) h-BN and (B) h-BN/Au (111). (C) LSVs curve for ORR of (i) Bare Au, (ii) BNNS/Au, (iii) Bare GC, and (iv) BNNS/GC; 
Inset is the Tafel plot of (i) Bare Au and (ii) BNNS/Au. (D) Optimized model for O2 adsorption on h-BN/Au (111) with distances in Angstroms. (E) Free energy 
illustration for ORR on h-BN/Au (111). Reproduced with permission [38]. Copyright 2014, American Chemical Society. (F) Free energy diagram of all the feasible 
ORR pathways on B12N12; Inset shows the optimized geometry of the B12N12 nanocage. Reproduced with permission [173]. Copyright 2016, American Chemi
cal Society. 

Fig. 8. (A) Schematic diagram showing stepwise preparation of BNC. (B) HR-TEM image of BNC2–850 with the nanorice structures and more defect sites. (C) CVs of 
the BNC2–850 catalyst in Ar- and O2-saturated 0.1 M KOH at a sweeping rate of 20 mV s–1. (D) ORR polarization curves of the BNC2–850 catalyst in O2-saturated 
0.1 M KOH at various rates. Reproduced with permission [175]. Copyright 2018, American Chemical Society. (E) Possible reaction pathways on the CN sheet for ORR 
with the one in red being the most kinetically favorable pathway. Reproduced with permission [176]. Copyright 2015, American Chemical Society. 

M. Rafiq et al.                                                                                                                                                                                                                                   



Nano Energy 91 (2022) 106661

9

ORR electrocatalyst [38] and DFT studies reveal that combining the 
d-orbital and p-orbital of single-layer BN causes a slight shift towards the 
Fermi level to alter the electronic properties of h-BN (Fig. 7A and 7B). 
Owing to the interface created between h-BNNS and Au substrate, O2 
forms bonds with two B atoms closest to the N atom, which is located 
directly above the Au atoms (Fig. 7C). Besides the surface of 
h-BNNS/Au, the edges of h-BNNS appear to be actively engaged in ORR. 
According to the free energy diagram, ORR to form H2O2 is feasible via 
the two and four electron routes on h-BNNS/Au (111) (Fig. 7D). The BN 
nanosheets on the gold electrode may reduce the overpotential in ORR 
(Fig. 7E) and the activity of BN nanosheets is improved by decorating 
them with Au NP (Au-BNNS/Au), revealing that loading AuNPs onto 
BNNS not only lowers the overpotential in ORR but also enhances ox
ygen reduction to H2O by 80–90% by the four-electron pathway [162, 
170,171]. Crystalline h-BN has also been investigated as an ORR elec
trocatalyst [172]. 

The curvature of nanomaterials plays a substantial role in adsorption 
and desorption of O2 [174] and BN nanocages show improved adsorp
tion of O2 and oxygen reduction intermediates due to the curvature ef
fect. Chen et al. have theoretically evaluated and compared the ORR 
efficacy of B12N12 and B60N60 nanocages [173] and the results indicate 

that the adsorption energies of all ORR intermediates on the B12N12 
catalyst are comparable to those previously reported for the Pt (111) 
catalyst, implying that it may be an efficient ORR catalyst with similar 
catalytic properties as Pt. According to the free energy diagram, the ORR 
process on these two BN nanocages may occur spontaneously by the 
dissociative route (Fig. 7F). 

Pyrolysis, chemical vapor deposition, and electron beam irradiation 
are effective methods to dope or generate defects such as B- or N-va
cancies and disrupted edges. Carbon doping can produce interesting 
electrocatalytic properties in h-BN. The nanorice-like carbon-doped h- 
BN (BNC) has been synthesized by CVD as shown in Fig. 8A and it shows 
promising catalytic properties such as an onset potential of + 0.83 V vs 
RHE in basic media (Fig. 8C and 8D). Two critical parameters including 
the synthesis temperature and composition affect the ORR activity. The 
HR-TEM image (Fig. 8B) shows that the rice-like BNC nanocrystals are 
consistent with the competitive growth of carbon. Despite a smaller 
onset potential than Pt/C, the nanorice-like C doped h-BN outperforms 
Pt/C in terms of reliability and resistance to methanol oxidation [175]. 
Zhao et al. have examined C-doped BNNS as an efficient catalyst for ORR 
[176] and theoretical studies demonstrate that doping BNNS with C 
increases the spin and electron density while decreasing the bandgap, 

Fig. 9. (A) Schematic representation of the 
electron donation back-donation phenomenon 
in the sample with and without the Pt cluster 
loaded onto p-BN; Charge-density difference 
plots of the samples. (B) LSV curve and (C) 
Electron transfer number (n) and H2O2 yield. 
Reproduced with permission [186]. Copyright 
2020, Elsevier. (D) Schematic diagram for the 
preparation of the G-BN superlattice based on 
exfoliating bulk BN crystals with PS. Repro
duced with permission [187]. Copyright 2019, 
The Royal Society of Chemistry.   
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leading to enhanced O2 adsorption. The chemical reactivity of the 
catalyst increases in ORR after substituting C for N by the four-electron 
OOH hydrogenation pathway as manifested by the low activation bar
rier of 0.61 V compared to Pt-based electrocatalysts (Fig. 8E). While 
defect-free BN nanostructures are highly inert and interact with metal 
atoms very weakly, defective BN nanostructures can be produced by 
metal atom doping [163,177,178]. Deng et al. have reported Co-doped 
boron nitride (Co/BN) as an ORR electrocatalyst [179] in which Co 
atoms interact with defective 2D-BN to maintain the Co/BN stability. All 
the ORR intermediates can adsorb on Co/BN. HOOH species are volatile 
and decompose into two OH species, implying that ORR occurs pri
marily by the direct 4 e- mechanism on Co/BN. 

Carbon-based non-metal nanomaterials doped with heteroatoms 
have also been investigated as electrocatalysts and the activity has been 
benchmarked with that of Pt/C [123,180,181]. Kahan et al. have 
observed that carbon substitution for both B and N gives rise to greater 
ORR catalytic activity than that B or N-doped graphene and DFT simu
lation indicates that co-doping reduces the gap between the LUMO and 
HOMO states [182]. Metal-supporting interactions are required in ORR 
activation of h-BN [183–185]. According to Li et al. [186], the donation 
and back-donation phenomena result in significant interactions between 
porous boron nitride (p-BN) and Pt NPs due to electron transfer from N 
atoms to Pt NPs and Pt NPs to B atoms (Fig. 9A). The Pt/p-BN catalyst 
exhibits outstanding catalytic activity in ORR with a 53 mV positive 
shift of the half-wave potential in comparison with commercial Pt/C 
(Fig. 9B and 9C). 

Modification by doping not only increases the porosity, but also 
improves the overall conductivity of the electrode materials. Carbon is 
introduced to h-BN to form borocarbonitride (BxCyNz) which is believed 
to include both graphene and h-BN domains and exhibit characteristics 
between those of graphene and h-BN [188]. Chen et al. [150] have 
synthesized porous carbon-doped boron nitride (BCN) in situ by heating 
the mixture of melamine and boric acid under Ar and revealed that 
carbon doping in BN enhances the nanopores (<0.7 nm) and structural 
defects. Besides, incorporation of O into porous BN results in different 
polarities of O-containing bonds as well as B-vacancies to boost the 
electron-attracting ability and adsorption capacity. Liu et al. [189] have 
reported the template-free synthesis of oxygen-doped mesoporous BN by 
pyrolysis to produce a large surface area (474.3 m2 g-1) and porosity 
(0.332 cm3 g-1). The presence of the distinct graphene and h-BN phases 
on the other hand, modifies the bandgap and charge density of the 
electrodes [190,191]. One of the advantages of the distinct nanoscale 
phase is that almost all C hexagons are linked to improving the stability 
of C-C and B-N bonds and Π-conjugation [192]. Rendón-Patiño et al. 
have proposed a reliable method to prepare the graphene-boron nitride 
(G-BN) heterostructure in superlattices as large-area films or powders by 
pyrolysis of exfoliated BN in polystyrene for ORR (Fig. 9D) [187]. 
Although manufacturing of monolayer G-BN is a difficult task, a variety 

of G-BN heterostructures have been synthesized on substrates such as Cu 
[193], Ir(111) [194], and Pt(111) [195] for ORR with metal-free cata
lysts. Table 2 summarizes the characteristics of modified BN-based ORR 
catalysts reported recently. 

4.2. Water splitting 

The scientific community has tinkered with the idea of producing 
energy from water for more than a century and electrocatalytic water 
splitting has emerged to be the technology of choice to produce fuels of 
the future. HER is the cathodic half-reaction in water splitting in which 
protons (acidic solution: 2H+ + 2e- → H2) or water (alkaline solution: 
2H2O + 2e- → H2 + 2OH-) are converted into molecular hydrogen. 
Mechanistically, three principal steps/reactions are involved in elec
trochemical HER: Volmer reaction (H+

(aq) + e- → Hads), Heyrovsky re
action (H+

(aq) + Hads + e- → H2), and Tafel reaction (Hads + Hads → H2). 
Molecular H2 forms by the Volmer–Heyrovsky or Volmer–Tafel pathway 
or both depending on the Hads coverage on the surface of the catalyst. At 
low Hads coverage, H2 is produced by the Volmer–Heyrovsky pathway 
but at high Hads coverage, H2 is formed via the Volmer–Tafel pathway 
[11,200]. The reaction rate of the catalyst mainly depends on the 
Hads–M strength (M stands for metal) in the interaction, which can be 
estimated theoretically by the hydrogen adsorption free energy 
(ΔGHads) [11,201,202]. The variation in ΔGH affects the nature of the 
reactions. A negative and small ΔGH* shows that the H* combines 
readily on the electrode surface thus favoring the initial Volmer step. 
However, a large absolute value of ΔGH* makes the subsequent Tafel or 
Heyrovsky step difficult. In contrast, a large and positive ΔGH means the 
whole reaction is sluggish because of weak interactions between protons 
and electrodes. Therefore, the ideal HER catalysts should have nearly 
zero ΔGH. In theory, zero voltage (0 V) is required to start a reaction but 
practically, it is crucial to apply a high potential to overcome the cell 
resistance and kinetic barriers on each electrode [203] and suitable 
electrocatalysts are required. Presently, noble metal catalysts such as Pt 
group metals are efficient electrocatalysts in HER offering low over
potentials but their low efficiency and limited resources restrict wide
spread use [204–206]. Consequently, the search for more suitable 
materials with a larger active surface area, specific activity, and particle 
or layer structure has increased significantly [207–213]. 

In many energy-related technologies like rechargeable metal-air 
batteries and water electrolysis, OER is a fundamental step [214–216]. 
Oxygen production is endothermic by nature (ΔH > 0) and occurs 
naturally in photosynthesis via absorption of photon energy from sun
light, but it can also be generated synthetically by OER in water splitting 
[217–220]. Compared to HER, OER is more sluggish and generally 
considered the thermodynamically and kinetically demanding process 
in water electrolysis [221]. There are a number of possible pathways in 
OER as a result of the formation of a large number of adsorbed 

Table 2 
Electrocatalytic characteristics of BN-based materials in ORR.  

Catalysts Electrolytes Half-wave Potential (E1/2 

V) 
Overpotential 
(mV) 

Onset-potential 
(V) 

Limiting Current density (mA. 
cm-2) 

Tafel slope (mV 
dec-1) 

Ref. 

1–1-NBC 0.1 M KOH – 590 0.87 4.18 79 [196] 
AuNP(5 nm)-BNNS/ 

Au 
0.05 M 
H2SO4 

– 720 – -0.2 – [162] 

AuNP(5 nm)-BNNS/ 
Au 

0.1 M HCLO4 – 760 – -0.2 – [162] 

BN-Gas-2 0.1 M KOH -0.20 – -0.05 5.7 – [197] 
BCN/KBC10% 0.1 M KOH – – 1.01 5 72.4 [181] 
Pt/p-BN 0.1 M HCLO4 0.902 – 1.000 – 74.9 [186] 
BCN2–850 0.1 M KOH – – 0.83 4.6 – [175] 
MnBN/C-75 0.1 M KOH 18 – 0.9 5.6 122 [184] 
CNTBN5–750 0.1 M KOH 0.72 – 0.86 5.78 – [198] 
N,B-CNT 1.0 M KOH -0.131 – -0.070 1.35 55.87 [199] 
GOBN5–750 0.1 M KOH 0.64 – 0.798 3.0 – [191] 
GOBN2-BM 0.1 M KOH 0.74 – 0.89 4.4 102 [190]  
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intermediates (M-O, M-OH, M-OOH), as it involves transferring of 4 
electrons and 4 protons [215]. The OER routes take place in different 
directions depending on the catalyst used and reaction medium (acid
ic/alkaline). However, in all directions, similar phenomena occur 

(adsorption/desorption of the oxide, peroxide, and superoxide in
termediates). For efficient OER, IrO2-based catalysts are considered the 
best but owing to the high price and limited resources, there have been 
extensive efforts to develop environmentally friendly, cheap, and 

Fig. 10. (A) TEM image of Au-Ni NPs-BNNS/Au. (B) LSV curves and (C) Tafel plots of BNNS-decorated composites in comparison with Pt NPs. Reproduced with 
permission [230]. Copyright 2019, Elsevier. (D) Bird’s eye and side views of Pt-modified h-BN. (E) LSV curves of various Pt/h-BN based catalysts. (F) Free energy 
diagram of Pt/h-BN, graphene, h-BN, and Pt. Reproduced with permission [231]. Copyright 2018, American Chemical Society. 

Fig. 11. (A) Schematic diagram of BNc,o and L-BN. (B) Partial densities and total density of states of L-BN and BNc,o. (C) OER polarization curves of different 
materials supporting IrOx. Reproduced with permission [233]. Copyright 2020, John Wiley and Sons. (D) Schematic diagram for the preparation of the (B,N: 
Mo2C@BCN) catalyst. (E) polarization curves of HER and OER in 1.0 M KOH for B,N:Mo2C@BCN. (F) Possible mechanism for overall water splitting on the B,N: 
Mo2C@BCN catalyst. Reproduced with permission [236]. Copyright 2018, American Chemical Society. 
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high-rate non-metal-based catalysts [215,216,222–227]. 
Since the electrocatalyst is a crucial component of the electrode, the 

HER activity depends on the properties of electrocatalysts and consid
erable efforts have been made to develop noble-metal free catalysts with 
low overpotentials and high current densities. Recently, boron nitride- 
based materials have attracted attention [228]. Uosaki et al. have re
ported improved HER activity from boron nitride nanosheets (BNNSs) 
prepared on a gold electrode. Theoretically, the edge sites have the most 
favorable hydrogen adsorption energies for HER and they experimen
tally verify that h-BNNSs with decreased lateral sizes exhibit a relatively 
low overpotential [229]. The HER activity of the same catalyst is slightly 
modified with Au NPs decorated on BNNSs/Au. The Au concentration in 
the catalyst is reduced by alloying the Au NPs with other metals such as 
Ni, Cu, and Co. The most efficient electrode is that modified with BNNSs 
and decorated with Au-Ni NPs and the HER activity is comparable to 
that of Pt with an overpotential of 15 mV (at 5 mA cm-2) and − 30 mV (at 
15 mA cm-2) higher than those obtained from a Pt electrode 
(Fig. 10A-10C) [230]. Introducing metallic surfaces to h-BN is an 
effective way to alter the intrinsic catalytic activity of h-BN by modu
lation of the band structure [155]. Guha et al. have evaluated the HER 
activity of the Pt electrode and Pt NPs wrapped/coated with h-BN pre
pared by a simple reduction method. They have shown theoretically and 
experimentally that the high efficiency of the catalysts arises from 
synergistic effects of h-BN and underneath Pt and also that the BN edge 
atoms offer dynamically favorable hydrogen adsorption sites (Fig. 10D). 
As a result, the catalyst is capable of generating an HER current density 
of 10 mA cm-2 at a 90 mV overpotential, which is 10 mV less than that of 
Pt NPs (Fig. 10E). Although h-BN is insulating with a bandgap of 6 eV, 
DFT calculation shows that when h-BN is modified with Pt NPs, the 
bandgap decreases drastically yielding metal-like properties. The lower 
ΔG is mainly due to covalent bonding between Pt and h-BN (Fig. 10F) 
[231] and Nguyen et al. have evaluated C-doped h-BNNS as a metal free 
bifunctional electrocatalyst for ORR and HER. Four geometric models of 
C-doped h-BNNSs are suggested, namely single and double C-doped 
h-BNNS in which C atom(s) occupy either the B or N site(s) and the 
single C-doped catalyst with dopants at the N site (CN) is more favorable 
for HER [196,232]. 

Generating boron, nitrogen, and oxygen vacancies are beneficial 
[233,234] and Liu et al. have synthesized conductive BNNS support by 
first co-doping with C and O and then using pulsed laser ablation (PLA) 
to generate oxygen vacancies to form L-BN (Fig. 11A) [233]. PLA 
modification creates interlaminar B-B dipolar interactions leading to 
significant electrical conductivity improvement (Fig. 11 B) and the ox
ygen vacancy is an active site for IrOx loading. Consequently, when L-BN 
is doped with IrOx, few electrons from Ir ions move to C atoms in N-C꞊N, 
resulting in oxidation of Ir ions to generate robust interactions between 
IrOx and L-BN. The enhanced electrocatalytic performance and high 
stability are confirmed by the low overpotential of 259 mV at 
10 mA cm-2 (Fig. 11C). The structural similarity between graphene and 

h-BN has motivated researchers to develop hybrid materials such as 
boron carbon nitride (BCN). Maji et al. have discovered that the gra
phene magnetic islands in h-BN generate a high level of chemical 
stimulation [235] and the magnetism in C-doped h-BN arises from the 
spin of unpaired 2pz electrons in the functionalized C atoms in h-BN. 
These valence electrons belong to an isolated carbon atom or to a gra
phene island, thus preventing all the carbon atoms from completing 
sub-shell filling and activating the catalyst in OER and ORR. DFT 
calculation shows the inherent relationship between chemical activation 
and magnetism in C-doped h-BN. Besides the magnetic island, the 
interface formed by combining a few exfoliated layers of graphene and 
BN produces synergistic effects to f-CNT and h-BN by providing the ideal 
site for oxygen adsorption and reduction [198]. 

Defective h-BN provides excellent support to design effective cata
lysts for both HER and OER [237]. Since water splitting consists of HER 
and OER, the development of bifunctional catalysts for both reactions 
have received increasing attention in recent years [238]. The HER and 
OER characteristics of some BN-based catalysts are summarized in  
Table 3. Anjum et al. have prepared a bifunctional Mo2C based catalyst 
embedded in the BCN network by single-step annealing (Fig. 11D). The 
B,N:Mo2C@BCN catalyst shows overpotentials of 198 mV for HER and 
360 mV for OER at a 100 mA cm-2 current density (Fig. 11E), which are 
smaller than those of commercial Pt/C (239 mV) and IrO2 (435 mV). 
The high activity primarily stems from enhanced charge transfer and 
wetting characteristics caused by the synergistic effects of B, N, and 
small Mo2C NPs embedded in the BCN system (Fig. 11F) [236,239]. 
Tang et al. have compared 18 different TMs deposited on the BCN hybrid 
for both HER/OER [240] and the enhanced HER/OER performance of 
the BCN hybrid with a large BN ratio is primarily due to charge polar
ization and synergism rendered by graphene, BN, and Ni. Although the 
use of BN-based catalysts in electrocatalytic water splitting is still in the 
early stage, recent experimental and theoretical results have unveiled 
tremendous potential. 

4.3. CO2 reduction reaction 

CO2 is the primary greenhouse gas produced by fossil fuel combus
tion and its concentration in the atmosphere has increased steadily. CO2 
reduction combined with renewable energy generation can lead to 
carbon-neutral fuels and mitigate the use of industrial chemicals pro
duced from petroleum. Electrochemical CO2 reduction to liquid fuels 
and chemical feedstocks is a significant area of research [241]. 
Compared to other electrochemical reactions such as the OER and HER, 
CO2RR differs in that it proceeds through multiple steps [242,243]. 
Thermodynamically, to accomplish the first step in CO2RR (formation of 
key intermediates (CO2

*− )), a high negative potential of − 1.90 V is 
required thus making the overall reaction energetically unfavorable 
[244]. The rate-determining step (RDS) in CO2RR is commonly believed 
to be the first electron transfer to CO2 to create the CO2

•- intermediate 

Table 3 
Electrocatalytic characteristics of BN-based materials in HER/OER.  

Catalysts Electrolytes HER/OER Overpotential (mV) Onset-potential (V) Current density (mA.cm-2) Tafel slope (mV dec-1) Ref. 

BN-Gas-2 0.1 M KOH OER – 0.37 10 379.3 [197] 
IrOx-L-BN 1.0 M KOH OER 259 – 10 36.68 [233] 
CNTBN5–750 0.1 M KOH OER 0.38 – 10 122 [198] 
Co3O4-BCN 1.0 M KOH OER 394 0.406 10 – [239] 
1–1-NBC 0.5 M H2SO4 HER 590 -0.43 10 205 [196] 
1–1-NBC 1.0 M KOH HER 486 – 10 199 [196] 
1–1-NBC 1.0 M PBS HER – -0.4 10 256 [196] 
Pt/h-BN 0.5 MH2SO4 HER 90 – – 29 [231] 
h-BN/Cu 0.1 M HCLO4 HER – -0.688 10 136 [155] 
h-Bn/Au 0.1 M HCLO5 HER – -0.688 900 108 [155] 
B,N:Mo2C@BCN 1.0 M KOH HER 100 – 10 62 [236] 
B,N:Mo2C@BCN 1.0 M KOH OER 360 – 100 61 [236] 
Ni@BCN – OER 0.47 V – – – [240] 
Ni@BCN – HER 0.02 V – – – [240]  
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and the next step depends on whether the oxygen atom or carbon atom is 
bound to the electrode surface [242]. CO2RR is a complicated reaction in 
which a wide range of products can be obtained (such as H2, CO, 
methanol, CH4, C2H4, ethanol, n-propanol, etc.) depending on the 
number of electrons transferred. CO2RR is further complicated by the 
simultaneous transfer of electrons and protons giving rise to the for
mation of complex intermediates. These multi-step transfer processes 
produce slow reaction kinetics and require a significant overpotential in 
order to produce fuels at an acceptable rate, thereby making it ineffi
cient for commercialization on a large scale [245]. To reduce the 
overpotential of CO2RR, electrocatalysts can be used to activate CO2. In 
general, a desirable electrocatalyst for CO2 reduction must be capable of 
mediating multiple electron and proton transfer while suppressing the 
competitive hydrogen evolution reaction [244–246]. 

Among the common CO2RR catalysts, copper is the only metal 
capable of producing large amounts of C1–C3 hydrocarbons due to the 
appropriate intermediate bonding strength for CO [247]. However, it 
suffers from poor product selectivity, high overpotential, and poor 

Faradaic efficiency mainly due to competitive reactions like HER 
[248–250]. Hence, highly active and selective CO2RR catalysts are 
required for efficient CO2RR electrocatalysis. With regard to metal cat
alysts, the scaling relationship of CO2RR intermediates correlates with 
the d-band structure [251,252] and so synthesizing metal-free catalysts 
with the only s- and p-orbital contributions can disrupt the scaling in
teractions. In this respect, BN-like materials can be active in CO2 
chemisorption by adding an extra electron to the structure [253–255] 
for possible CO2 reduction. Cao et al. have reported that carbon doping 
in h-BN can improve the catalytic activity in CO2RR [256] and theo
retically, an active site is formed when a graphitic C atom is surrounded 
by the h-BN B atom. They use a simple pyrolysis method to prepare 
BCN-x flakes which boast a Faradic efficiency of 83.5% for HCOOH at a 
small overpotential of 100 mV in addition to energy efficiency of 78.0%. 
According to DFT calculation, CO2 activation is more likely to take place 
on B atoms, whereas proton activation occurs more frequently on C 
atoms (Fig. 12A-12C). Tang et al. have predicted carbon-doped boron 
nitride nanoribbons (BNNRs) which are active as both C1 and C2 

Fig. 12. Free energy diagrams for (A) Proton activation and (B) CO2 activation at 0 V versus RHE. The crystal structures of graphene and h-BN are presented above 
the graph and the white, pink, gray, blue, and red balls represent H, B, C, N, and O atoms, respectively. (C) Faradaic efficiency versus carbon contents of h-BN and 
BCN-x catalysts in HCOOH production. Reproduced with permission [256]. Copyright 2013, The Royal Society of Chemistry. (D) Free energy diagram of *COOH and 
*H for comparison of HER and CO2RR on G-BNNR (nanoribbon) and G-BNNT (nanotube). (3,3)-(9,9) represent catalysts with different indexes from (3) to G-BN (9). 
(E) Gibbs free energy change diagrams for the formation of CO and HCOOH molecules on the catalysts. Reproduced with permission [258]. Copyright 2020, John 
Wiley and Sons. (F) Optimized geometries for HCOOH on h-BN/Ni. (G) Comparison of binding energies (eV) for intermediate species such as H, HCOO, and COOH on 
the h-BN monolayer, Ni(111), and h-BN/Ni(111). Reproduced with permission [259]. Copyright 2018, American Chemical Society. 
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products and the electrocatalyst converts CO2 into CO at a relatively low 
overpotential of − 0.5 V and forms C2 products such as C2H4 and 
C2H5OH with high efficiency and selectivity for C2H5OH by suppressing 
HER [257]. The selectivity for C2 products stems from the chemical 
bond between *CH2 and CO intermediates generated from the edge B 
atoms and C dopant as dual active sites on BNNRs. 

A potential benefit of introducing curvature to the catalyst surface is 
to boost the binding strength with key intermediates. Mao et al. have 
shown theoretically that the C-N interface on the curved surface pro
vides highly active sites for CO2RR as well as strong binding with 
*COOH groups to suppress HER (Fig. 12D and 12E) [258] and the 
smaller index of graphene-BN nanotubes (G-BNNTs) leads to CH3OH 
formation, whereas the large index of the G-BNNTs facilitates the gen
eration of CH4. Hybridizing BN with metals and alloys can produce 
high-performance heterogeneous catalysts [162,260,261]. Hu et al. 
have observed the trend of the activity of catalysts for CO2 reduction to 
HCOOH by monitoring the binding energies of the three intermediates 
of H, HCOO, and COOH [259]. By studying the h-BN interface and en
gineering of the monolayer on different TMs (Co, Ni, and Cu), the key 
intermediates produced during HER and CO2RR possess unique chemi
cal reactivity at the h-BN/metal interface when an electron is transferred 
from the metal to h-BN. Accordingly, H adsorption on the surface of 
h-BN/metal decreases significantly but HCOO adsorption is least 
affected, consequently resulting in CO2RR selectivity control and sup
pressed HER (Fig. 12F and 12G). Tan et al. have compared 17 different 
metal surfaces from the perspective of reduction of CO2 to CH4 and 
Fe/defective BN and Pt/defective BN are promising catalysts boasting 
low onset potentials − 0.52 V and − 0.60 V in conjunction with high 
selectivity [262]. The high electrochemical activities arise from the mild 
electron affinities of the electrocatalyst for C and O, thus modifying the 
free energies of the electrochemical reduction intermediates in the re
action. Similarly, Cui et al. have studied catalysts consisting of 

B-vacancy of BN doped with 18 different metals and Mo-doped BN ex
hibits excellent CO2 to CH4 conversion together with a small limiting 
potential of − 0.45 V [263]. The Mulliken charge analysis of the activity 
shows that charges are transferred from MoN3 (Moiety 2) and BN 
monolayer (Moiety 3) to the CxHyOz (Moiety 1) (end products). The BN 
monolayer serves as a reservoir for electrons for donating or accepting 
electrons to contribute 0.626 electrons to moiety 1, whereas MoN3 acts 
as the transmitter and active site for CO2RR. Cu can catalytically pro
duce hydrocarbons and alcohols in large amounts with low faradaic 
efficiency [247,264] and Sun et al. have demonstrated a 4-fold increase 
in the efficiency [265]. The N-based Cu(I)/C-doped boron nitride (BN-C) 
composites convert CO2 into CH3COOH (acetic acid) with a Faradaic 
efficiency of approximately 80.3% due to the synergistic effects between 
BN-C30, Cu metal center, N based ligand, and electrolyte. Qin et al. have 
determined the formation energy (Ef) and dissolution potential (Udiss) of 
96 two-dimensional catalysts containing different defect sites of mono
clinic crystal BN, and Ga/In@N-BN, Sn@BN, and Co@N-BN are 
considered the best catalysts to produce HCOOH, CO, and CH3OH by 
CO2RR, respectively [266]. The literature on catalysts for CO2 reduction 
is less extensive than that on ORR due to thermodynamic and kinetic 
limitations plaguing CO2 reduction. Although CO2RR is highly complex 
including multiple steps and multiple products depending on the cata
lysts, more high-performance BN-based catalytic systems are expected 
to be developed in the future. 

4.4. Nitrogen reduction reaction 

NRR is an important process for ammonia (NH3) synthesis vital to 
agriculture and renewable fuels [267]. As a carbon-free fuel, NH3 with 
approximately 18% hydrogen is a safer energy source than pure 
hydrogen [268,269]. Although the Haber-Bosch process (HBP) is the 
common commercial technique to produce ammonia, the process uses 

Fig. 13. (A) Schematic diagram for defective C-BN nanosheets preparation. (B) VNH3 and FEs of C-BN/CP at different potentials. Reproduced with permission [288]. 
Copyright 2020, American Chemical Society. (C) N2 bonded to a B atom stabilized by the substrate. (D) Schematic depiction of the distal, alternating, and enzymatic 
mechanisms in N2 reduction to NH3 by B-based catalysts. Reproduced with permission [289]. Copyright 2019, The Royal Society of Chemistry. 
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1% of the world’s energy supply, has low catalytic efficiency, and yields 
unwanted byproducts such as N2H2 and N2H4 in addition to generating a 
large amount of CO2 [270–272]. Compared to HBP, NRR is projected to 
be 20% more thermodynamically energy-efficient [273,274] and 
compared with the ORR mechanisms, NRR mechanisms can be classified 
as dissociative or associative depending on the intermediates in elec
trocatalysis [275,276]. NRR presents several challenges, for example, 
low N2 adsorption and large bond energy of N–––N (940.95 kJ/mol) 
cleavage, but they can be overcome by rational design of the electro
catalysts [277]. The catalyst contributes primarily to chem
isorption/activation of N2 by combining the empty and occupied 
d orbitals [278,279] and several metal-based catalysts containing Fe, 
Mo, V, Ru, Au, and Pd have been proposed [152,280–285]. Unfortu
nately, most of these metal-containing electrocatalysts have small or no 
proton adsorption free energy and produce electron donation effects 
which facilitate HER instead. Hence, it is challenging to balance 
competitive nitrogen activation and hydrogen evolution for metal-based 
catalysts and low NH3 yield and Faradic efficiency (FE) frequently result. 

Recently, 2D materials have become popular electrocatalysts for 
NRR due to low proton adsorption and small hydrogen production 
[286]. Zhang et al. have observed that h-BNNS prepared by liquid 
exfoliation can convert N2 to NH3 at a rate of 22.4 μg h− 1 mg− 1 with a 
Faradaic efficiency of 4.7% at − 0.75 V [287] and further improvement 
has been made by Liu et al. with highly porous structures produced by a 
template-based method (Fig. 13A). The defective carbon-doped BNNSs 
are very active compared to reported exfoliated BNNSs, producing 
36.7 μg h− 1 mg cat− 1 of NH3 at − 0.55 V with 6.51% faradic efficiency 
(Fig. 13B). The unsaturated B atom at the h-BN edge site is mainly 
responsible for activation of inert N2 molecules by lowering the energy 
barrier for NH3. Furthermore, doping with carbon improves the 

electrical conductivity of the nanosheets and increases the charge 
transfer rate [288]. The B atom as an electron-deficient center possesses 
Lewis acid like properties and so it attacks N2 (Lewis base) to create the 
Lewis acid-base complexes. The outer orbital of the B atom hybridizes to 
generate sp2 orbitals composed of partially occupied and vacant orbitals. 
The vacant sp2 orbitals accept lone-pair electrons from N2 molecules, 
while the filled sp2 orbitals donate electrons back to the anti-bonding p* 
orbital of the N2 molecules (Fig. 13C and 13D) [289]. Owing to electron 
acceptance and back donation, B-based materials are promising elec
trocatalysts for NRR. Li et al. have observed that carbon-doped hexag
onal boron nitride nanoribbons (BNNRs) have excellent N2 capturing 
ability originating from the edge lone pair electrons and the carbon 
dopant enhances the NRR catalytic activity by modulating the adsorp
tion free energy of the NRR intermediates [290]. 

Design and preparation of the proper catalysts solely by experi
mental screening is an arduous task and computer-aided methods are 
highly desirable in the search for efficient NRR catalysts. Theoretical 
investigations not only provide assistance in designing highly efficient 
and novel electrocatalysts but also help to understand the NRR mecha
nism of different materials. Zhao et al. have prepared a stable and effi
cient electrocatalyst for NRR by incorporating Mo atoms into defective 
BN among different TM atoms. The high activity arises from high spin 
polarization, selective stabilization of N2H* species, and destabilization 
of NH2* species with a relatively low overpotential of 0.19 V (Fig. 14) 
[291]. BN/graphene-based hybrid nanosheets functionalized with single 
Mo atoms at B vacancies deliver good NRR performance. By introducing 
Mo atoms to B vacancies, the localized spin density and reduction in 
bandgap energy critical for activation of N2 molecules reduce the 
overpotential for conversion of N2 to NH3 via an enzymatic pathway 
[292]. Moreover, the catalytic properties of several types of single TM 

Fig. 14. Free-energy diagrams for NRR on the Mo–BN monolayer at zero and applied potentials (limiting potential) by (A) Distal, (B) Alternating, and (C) Enzymatic 
mechanisms. (D) Schematic depiction of the three mechanisms in N2 electroreduction to NH3 on the single Mo atom anchored on the defective BN monolayer. 
Reproduced with permission [291]. Copyright 2017, American Chemical Society. 
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atoms anchored to B vacancies of BN have been studied theoretically 
[293] and the curvature effect also impacts the physical and chemical 
properties of the catalysts. Making h-BNNSs into nanotubes and filling 
with TMs improve NH3 production and according to simulation, the 
activity is associated with the cooperation of occupied and unoccupied 
boron p states, which act as electron reservoirs, consequently facilitating 
N2 fixation and reduction by the enzymatic pathway [294,295]. Table 4 
presents the characteristics of some common BN-based catalysts for 
NRR. 

5. Conclusion and prospective 

Significant progress has been made in the development of h-BN, 
including synthesis and applications, to render them efficient electro
catalysts in next-generation energy technology. Being inert materials, h- 
BN has not been investigated as extensively as other 2D materials in the 
energy conversion field. However, spurred by recent advances pertain
ing to physio-chemical modification and functionalization, h-BN with 
unique characteristics such as tunable bandgaps and high meso/micro
porosity has attracted much attention. In this review, the 2D h-BN 
structures are described and some of them are suitable catalysts without 
needing additional binders and supports. In fact, h-BN is an excellent 
supporting substrate for catalytic reactions due to its high chemical, 
electrochemical, and thermal stability. Moreover, the large surface area, 
abundant active sites, and heteroatom doping improve the properties of 
h-BN, so that the electronic properties as well as adsorption and 
desorption capabilities of reactants, intermediates, and products can be 
promoted from the perspectives of ORR, HER, OER, CO2RR, and NRR. 

Despite significant recent advances in 2D h-BN based electro
catalysts, there are several critical challenges, for example, large-scale 
production, controllability of the modification methods, electro
catalytic activity, and mechanisms, particularly in overall water split
ting, CO2RR, and NRR. Considering that modification methods affect the 
physio-chemical properties of h-BN, electronic manipulation and defect 
engineering need to be refined. In the meantime, the detailed mecha
nisms and relationship between these modification methods and prop
erties of h-BN must be explored. Because most of the modification 
methods require a high temperature and harsh conditions, the amounts 
of metal dopants and grafted functional groups are difficult to control, 
thus creating differences between theoretical and experimental studies. 
Elimination of defects, particularly grain boundaries (GBs) stitching mis- 
oriented domains, is critical to the production of high-quality h-BN 
composites. To achieve this, the single crystal domains of h-BN can be 
made to be as large as possible or is fully integrated with the identical 
orientation [300]. In-depth knowledge of the basic growth mechanisms 
and substrates is required for the development of h-BN. Furthermore, the 
wide range of h-BN applications requires h-BN films with different 
thicknesses and precise control of the number of layers of h-BN films is 
necessary without sacrificing the crystallinity and homogeneity. Inte
grating h-BN layers into other 2D materials such as graphene and 2D 
transition metal dichalcogenides (TMDCs) to create hybrid 2D materials 
has aroused much interest in recent years. However, controlled 
manufacturing of in-plane and vertical heterostructures with crisp and 
clean interfaces is still a difficult task and it is still challenging to 
implement these methods in large-scale commercial production. Future 

work is expected to focus on combined theoretical and experimental 
approaches to develop simple and environmentally sustainable methods 
for large-scale synthesis of h-BN based materials. It is our belief that 
there is sufficient scientific interest to warrant successful development of 
h-BN based electrocatalysts for future green energy systems and h-BN is 
expected to play a vital role in our continuous endeavor to mitigate the 
society’s reliance on fossil fuels to protect the environment. 
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