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A B S T R A C T

The high ion energy produced by the substrate bias is essential to the enhancement of the sp3 content in dia-
mond-like carbon (DLC) coatings and adhesion with the substrate. However, excessive ion energy can turn into
heat conversely converting sp3 into sp2 undermining the mechanical properties. In this work, pulsed kV bias is
applied to increase the carbonous ion energy to increase the sp3 content in DLC coatings and improve the
adhesion with the substrate simultaneously while avoiding adverse temperature increase. The high ionized
carbonous ions flux is formed by an anode-layer ion source with C2H2 gas and Cr/CrCx/CrC interlayers are
introduced between the DLC coating and high-speed steel (HSS) substrate to release the internal stress by high-
power impulse magnetron sputtering (HiPIMS). The DLC coatings not only have a large sp3 content, high
hardness of 18.5 GPa, a low friction coefficient of 0.12, superior anti-corrosion behaviors,and wear rate of
0.87 × 10−15 m3/N m for 4 h, but also exhibits outstanding adhesion (Lc = 76 N) with the HSS substrate in spite
of a DLC coating thickness of 13 μm.

1. Introduction

Diamond-like carbon (DLC) coating, a metastable form of amor-
phous carbon with mixed hybridizations of sp2 and sp3 [1,2], have
excellent mechanical hardness, chemical inertness, tribological prop-
erties such as low friction and wear properties [3–5], as well as self-
lubrication for hydrogenated coatings [6–8]. DLC coatings are widely
used as protective coatings on cutting tools, biomedical devices, and
microelectromechanical devices (MEMs) [1]. However, the high in-
ternal stress in the coatings leads to a poor adhesion with many sub-
strates [9], especially for DLC coatings thicker than 3 μm. The internal
stress in DLC coatings can be reduced but the hardness, self-lubrication,
and corrosion resistance are sacrificed [10,11]. The ion energy pro-
duced by the substrate bias can improve the sp3 content which need
more energy to form than sp2 [12] in DLC coatings and adhesion with
the substrate, but an excessively large ion energy creates heat that
converts sp3 into sp2 thus worsening the mechanical properties. In
physical vapor deposition (PVD), the substrate bias is typically < 1

kV DC and in plasma immersion ion implantation & deposition (PIII&
D), the pulsed substrate bias is always > 10 kV in order to perform ion
implantation [2–4]. When a DC bias is applied, the hardness and ad-
hesion increase initially with increasing bias by producing more sp3

hybridization and strengthening the interface. However, the too large
bias leads to ion-beam-induced thermal effects, converting sp3 to sp2

and undermining the mechanical properties. While, although the bias is
pulsed, the high voltage of PIII&D (> 10 kV) is too large for DLC de-
position, and in fact, the mechanical properties decrease monotonically
with substrate bias [13–16].

In this study, in order to avoid excessive heating while increasing
the carbonous ions energy to improve the sp3 fraction [16–18] and film
adhesion, a medial pulsed bias (1–10 kV) with a low duty cycle of 0.5%
is adopted to prepare DLC coatings. The effects of the substrate bias on
the structure, mechanical properties and electrochemical performances
of the DLC coatings are studied systematically. The 13 μm thick coating
has a high hardness of 18.5 GPa, superior anti-corrosion behaviors, as
well as excellent tribological characteristics such as a small friction
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coefficient of 0.12, low wear rate of 0.87 × 10−15 m3/N⋅m for 4 h, and
excellent adhesion of 76 N.

2. Experimental details

The homemade multifunctional plasma surface modification and
deposition system with a diameter of 100 cm and height of 80 cm is
shown in Fig. 1. The base pressure was 8 × 10−4 Pa. The substrates for
the hydrogenated amorphous carbon (a:CeH) films were mirror-po-
lished silicon (100), high-speed steel (HSS,Φ25 × 4 mm) and stainless
steel (SS, 4 × 3 cm) and were set at 15 cm from target or anode-layer
ion source. Before deposition, they are ultrasonically cleaned in alcohol,
acetone, and deionized water for 30 min each. An anode-layer ion
source was operated at 800 V and 0.45 A to produce the Ar plasma to
perform pre-cleaning for 20 min (40 sccm, 99.999% purity) at 0.8 Pa
and DC bias of −800 V. The Cr/CrCx/CrC interlayer [13] was deposited
by HiPIMS using a Cr target (99.9% at.%) and a gradient atmosphere of
Ar and C2H2 at a DC bias between 800 V and 100 V and a pressure of
0.8 Pa, as shown in Table 1. The HiPIMS voltage is 750 V, 50 Hz, 300 μs
with about 320 A of peak current. Cr layer was deposited in pure Ar
(30 sccm) atmosphere firstly by HiPIMS with 800 V DC bias in 2 min.
Then C2H2 was added into vacuum chamber with a flow from 0 sccm to
30 sccm and DC bias decreased from 800 V to 100 V in 8 min. Finally,
30 sccm C2H2 and 100 V bias were used to deposit C rich CrC layer for
2 min. The C plasma was produced by anode-layer ion source to deposit
DLC coatings in Ar and C2H2 [10/45 sccm, C2H2 (99.8% purity)] at-
mosphere [19–21]. To evaluate the effects of the pulsed bias, 1.5 kV,
3.5 kV, 5.5 kV, 7.5 kV, and 9.5 kV were and the frequency and width of
the pulsed bias were kept at 50 Hz and 100 μs.

Field-emission scanning electron microscopy (FE-SEM, ZEISS
SUPRA® 55) and energy-dispersive X-ray spectrometry (EDS) were

employed to determine the microstructure, thickness, and composition
of the coatings. The bonding information was obtained by high-re-
solution confocal Raman scattering (Horiba LAabRam HR VIS) with a
532 nm laser as the excitation source and X-ray photoelectron spec-
troscopy (ESCALAB 250×, Thermo Fisher, England) with a pass energy
of 20 eV and an analysis time of 50 ms. The nanoindentor (Hysitron TI
950) in the Nano Dynamic Mechanical Analysis mode was used to
measure the micro-hardness and each sample was tested five times at
different locations to improve the accuracy. The adhesion strength
between the coatings and substrates was measured on a scratch tester
(WS - 2005, Zhongke Kaihua Technology, China) equipped with
acoustic emission and the scratch patterns were captured by a 3D laser
scanning microscope (KEYENCE, VK - X200). The load was gradually
increased from 0 N to 100 N at rates of 3 mm/min and 50 N/min. The
friction coefficients and wear resistance were determined on a ball-on
disk tester (Rtec MFT - 5000) at a relative humidity of 65 ± 1% and
temperature of 25 ± 1 °C. A Si3N4 ball (Ф3 mm) was used against the
coatings at 4 N and 200 rpm and the wear radius was 5 mm.
Electrochemical corrosion properties of DLC films and SS substrate
were characterized with polarization curves, impedance modulus and
phase-angle Bode diagrams by electrochemical workstation (CHI -
604E, Shanghai Chenhua). The three-electrode system consisted with a
platinum stuck counter electrode, a working electrode (WE) and a sa-
turated calomel reference electrode (SCE) and 3.5% NaCl solution were
used as electrolyte in the Tafel model at room temperature. The
sweeping range of polarization curves was - 1.5 to +1 V and the contact
area between electrolyte and sample was 1.77 cm2.

3. Results and discussion

Fig. 2 shows the cross-sectional morphologies of the DLC coatings

Fig. 1. Schematic diagram of homemade multifunctional plasma surface modification and deposition system and substrates' position.

Table 1
Experimental parameters in Cr/CrCx/CrC interlayer and DLC coatings deposition.

Ar (sccm) C2H2 (sccm) Bias (V) Time (min) Gas pressure(Pa)

Interlayer Period I 30 0 −800 2 0.8
Period II 30 0–30 −100 8
Period III 30 30 −100 2

DLC coating 10 45 −1500 (50 Hz,100 μs) 840 0.5
10 45 −3500 (50 Hz,100 μs) 840
10 45 −5500 (50 Hz,100 μs) 840
10 45 −7500 (50 Hz,100 μs) 840
10 45 −9500 (50 Hz,100 μs) 840
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deposited on Si (100) at pulsed biases of 1.5 kV, 3.5 kV, 5.5 kV, 7.5 kV,
and 9.5 kV. The coatings have a similar thickness of about 13 μm in-
cluding the 1.0 μm thick gradient Cr/CrCx/CrC interlayer [13]. The
interfaces between the substrate, interlayer, and DLC coating show
good adhesion due to energetic ion bombardment produced by HiPIMS
discharge of the Cr target. A gradient morphology from columnar Cr to

featureless C-rich CrC and gradient structure from crystalline to
amorphous [13] can be observed from the interlayer. The DLC coatings
do not have apparent defects regardless of pulsed bias.

Fig. 3 shows the Raman scattering and XPS results of the DLC
coatings deposited on Si (100) at pulsed biases of 1.5 kV, 3.5 kV, 5.5 kV,
7.5 kV and 9.5 kV. Raman scattering is frequently used to characterize

Fig. 2. SEM cross-sectional images of the DLC coatings deposited at (a) 1500 V (b) 3500 V (c) 5500 V (d) 7500 V (e) 9500 V pulsed biases.

Fig. 3. (a) Raman scattering spectra and (b) XPS C1s spectra of prepared DLC coatings deposited at different pulsed bias.
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DLC coatings by determining the D peaks (at ~1345 cm−1) and G peaks
(at ~1580 cm−1) using Gaussian fitting [5–7]. The G band represents
the stretching mode of sp2 carbon atoms in both rings and chains and
the D band is related to the breathing mode of sp2 in the rings [22–24].
Thus, the relative intensity ratio of the D peak (at 1348.87 cm−1) to G
peak (at 1543.41 cm−1) (ID/IG) can indict the relative contents of sp3

and sp2 of DLC coatings [25]. Here, the ID/IG ratio is almost a constant
at 0.54 when the pulsed bias is below 7.5 kV but increases to 0.63 if it is
increased to 9.5 kV. Moreover, the position of G band is moving forward
to high wavelength with the increasing of bias, suggesting that the
transformation from sp3 to sp2 is affected by the heat generated by
energetic ions [2]. The XPS C1s spectra in Fig. 3(b), which detected
after 15 s etching by Ar ions, can be deconvoluted into two peaks using
Gaussian fitting with bonding energies of 284.3 ± 0.1 eV and
285.2 ± 0.1 eV, corresponding to C]C sp2 hybridized carbon atoms
and CeC (together with CeH) sp3 hybridized carbon atoms, respec-
tively [11]. There is no obvious CeO peak can be calculated due to the
surface etching by Ar ions. The shift of the C1 peak to a smaller binding
energy is observed as the pulsed bias is increased. The sp3 contents
calculated from the peak areas, which are 61.7%, 62.2%, 60.5%,
57.5%, and 50.3% for pulsed biases of −1.5, −3.5 V, −5.5 V, −7.5 V,
and −9.5 kV, respectively, indicating a relative large sp3 content
compared to those reported before [8], especially at a small pulsed bias.

As a result to the large internal stress, film delamination is a po-
tential problem in practice. Scratch texts are performed to determine
the adhesion strength of the DLC coatings on HSS deposited at 1.5 kV,

3.5 kV, 5.5 kV, 7.5 kV, and 9.5 kV and the scratch images are obtained
by 3D laser scanning microscopy, as shown in Fig. 4(a). Both the lo-
cations of the semicircular cracks and the acoustic signals suggest de-
lamination [26]. The data shows that the adhesion strength increases as
the pulsed bias increased from 1.5 kV to 9.5 kV. The critical load (Lc) is
improved significantly when the pulsed bias goes up from 1.5 kV to
9.5 kV and a large value of 76 N, which is few reported in previous
published papers [27–29], is obtained from the DLC coating that is >
10 μm thick. To study the delamination characteristics, EDS is used to
determine the compositions at points A-E after delamination as shown
in Fig. 4(b). The major elements in the delaminated areas are Cr and C
when the pulsed bias is below 7.5 kV, indicating that delamination
occurs at the top interface between the interlayer and DLC coating.
However, the Cr concentration increases while that of C decreases as
the pulsed bias is increased, suggesting the delamination interface
moves down to the Cr layer because of the gradient composition of the
interlayer from Cr to C-rich CrC. When the pulsed bias is 9.5 kV, Fe, C,
W are detected from point E, implying that delamination occurs at the
interface between the HSS substrate and Cr/CrCx/CrC interlayer.

The excellent adhesion observed from the DLC coatings deposited at
large pulsed biases can be attributed to two main factors. Firstly, a
gradient C/CrCx/CrC interlayer is introduced to relax the mismatch
[13,30] between the HSS substrate and DLC coating. The energetic Cr+

produced by HiPIMS which offers high ionization of the sputtered
materials [9] strengthens the interface between the HSS substrate and
interlayer and consequently, delamination occurs at the top interface

Fig. 4. (a) Scratch morphology and (b) EDS spectra showing the elemental composition of the DLC coatings deposited at different pulsed biases.
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between the interlayer and DLC coating when the pulsed bias is < 7.5
kV. The energy of the highly ionized carbonous ions flux produced by
the anode-layer ion source [33] increases with pulsed bias leading to a
higher degree of ion implantation at the interface to enhance the ad-
hesion strength between the interlayer and DLC coating [18]. When the
pulsed bias is increased to 9.5 kV, adhesion at the top interface is better
than that at the bottom interface between the substrate and the

interlayer and so the delamination region moves down to the latter.
The hardness and elastic modulus of the DLC coatings deposited on

HSS at different pulsed biases are assessed by nano-indentation as
shown in Fig. 5. The Dynamic Mechanical Analysis (DMA) mode
adopted on the Hysitron TI 950 was used and the values presented here
are averages of 5 measurements. The hardness and elastic modulus are
similar when the pulsed bias is below 5.5 kV but decrease to 18.5 GPa
and 176.3 GPa respectively, when the pulsed bias is increased to 7.5 kV.
The obvious decrease occurs when the pulsed bias is 9.5 kV showing a
hardness of 14.3 GPa, and it is related to the reduced sp3 content
[31–33], confirmed by XPS and Raman scattering (Fig. 3).

The tribological properties of the DLC coatings on HSS deposited at
different pulsed biases are shown in Fig. 6(a) and (b). The friction
coefficients exhibit a sharp drop in the beginning because of a transfer
layer [34–36] on the surface and then stabilizes at 0.12–0.14 afterwards
for the DLC coatings compared to about 0.7 on the HSS substrate. The
wear rates of the DLC coatings show are consistent with that of the HSS
substrate. The smallest friction coefficient of 0.12 and wear rate of
0.87 × 10−15 m3/N m is observed from the DLC coating deposited at
3.5 kV corresponding to the largest sp3 content and hardness [37–39].

The electrochemical corrosion behaviors are investigated by po-
tentiodynamic test. Fig. 7 shows the polarization curves of DLC coatings
and SS substrate, and the details of corrosion current density and cor-
rosion potential are listed in Table. 2. All DLC samples exhibit much
better corrosion resistances than SS substrate which has the corrosion
potential of −1.025 V and the corrosion current density of 45.9 μA/
cm2. When the pulsed bias is below 7500 V, no significant difference
can be observed in the corrosion performance. Further increasing the
pulsed bias, the decreased corrosion potential and increased corrosion
current density occurs. The sample prepared with the pulsed bias of
5500 V shows the best corrosion properties with the largest corrosion
potential of −17.2 mV and the smallest corrosion current density of
11.9 μA/cm2, even compared with those prepared in the previous works
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Table 2
The Icorr and Ecorr results of SS and DLC coatings deposited at different pulsed
biases.

Sample Ecorr/mV Icorr/μA·cm−2

SS −1025 45.9
1500 V −88.0 21.5
3500 V −35.2 18.6
5500 V −17.2 11.9
7500 V −77.2 18.8
9500 V −314.6 29.1
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[40–42]. All the features are consistent with the evolution of the sp3

content and the hardness [43–45], suggesting the important effect of
the hybridization ratio (sp3/sp2) in the DLC induced by the excess ion
bombardment [46].

4. Conclusion

To enhance the adhesion between a thick DLC coating and HSS
substrate and simultaneously avoid graphitization at a high tempera-
ture, pulsed kV biases are applied to deposit the DLC coatings. The
intermittent energetic ion bombardment and implantation enhances not
only the adhesion between the 13 μm thick DLC coating to > 70 N, but
also the sp3 content and mechanical and electrochemical corrosion
behaviors including the hardness, wear resistance and corrosion re-
sistance. Our results suggest an effective strategy to fabricate thick DLC
coatings with good adhesion, strength mechanical properties and ex-
cellent corrosion behaviors.
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