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Based on the one component plasma model, a new dispersion relation and group velocity of

elliptically polarized extraordinary electromagnetic waves in a superdense quantum magnetoplasma

are derived. The group velocity of the extraordinary wave is modified due to the quantum forces and

magnetization effects within a certain range of wave numbers. It means that the quantum spin-1/2

effects can reduce the transport of energy in such quantum plasma systems. Our work should be of

relevance for the dense astrophysical environments and the condensed matter physics. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4773046]

I. INTRODUCTION

Quantum plasmas have attracted much attention due to

its wide applications in different areas, such as in astrophysi-

cal objects,1 nanoscale electromechanical systems,2 ultra-

cold plasmas3 as well as in intense laser-solid density plasma

interaction experiments.4–7 Moreover, it has recently been

experimentally shown that quantum effects are important in

inertial confinement fusion (ICF) plasmas.8 In quantum plas-

mas, when the de Broglie wavelength of the charged carriers

becomes comparable to the dimensions of the system (such

as interparticle distances), quantum effects start playing a

role. In the quantum regime, the plasma obeys certain condi-

tions, as discussed by Manfredi.9 It should be mentioned that

the equilibrium distribution function of the degenerate elec-

trons follows the Fermi-Dirac statistics in dense quantum

plasmas, and there are new aspects of collective interactions

due to the forces involving electron tunneling through the

quantum Bohm potential and electron spin effects.10 There

are three well-known models to describe quantum plasma

systems, the Wigner-Poisson (WP) model (in the presence

of magnetic fields, the so-called Wigner-Maxwell model),

Hartree model, and quantum hydrodynamic (QHD) model.

The WP model describes the statistical behavior of quantum

plasmas, whereas the Hartree model describes the hydrody-

namic behavior.9 The QHD model, which represents the

transport of some microscopic variables such as, charge, mo-

mentum, and energy in plasmas has been introduced to deal

with some issues in semiconductor physics.11 As a fluid

model, the QHD model has the advantage of mathematical

efficiency and can be derived from the WP model and/or

the Hartree model.9,12,13 It has been extensively used in the

study of quantum plasmas transport, waves, and instabilities.

The quantum magnetohydrodynamic (QMHD) model has

also been obtained using the QHD model with magnetic

fields based on the Wigner-Maxwell equations.13

The concept of spin magnetohydrodynamics has

attracted much interest since it was introduced by Brodin

and Marklund.14 Since then, quantum effects including the

Bohm potential and electron spin-1/2 effects have been stud-

ied by many researchers. As described in Ref. 15, Marklund

and Brodin investigated the linear response of the quantum

plasma in an electron-ion system and derived the relevant

plasma equations. Very recently, some researchers16 studied

the oblique propagation of low-frequency magnetosonic

waves in spin-1/2 degenerate magnetoplasma composed by

mobile ions, electrons, and positrons. They found that the

effect of quantum corrections in the presence of positron

concentration significantly modified the dispersive proper-

ties. The magnetoacoustic solitons in a quantum magneto-

plasma with Bohm potential and electron spin-1/2 effects

were studied by Marklund, Eliasson, and Shukla,17 and it

was shown that the electron spin-1/2 effects modified the

shape of the solitary magnetoacoustic waves. Saleem et al.18

studied the quantum corrections in the linear dispersion rela-

tions of cold dense plasmas, and the low frequency electro-

static and electromagnetic linear modes in nonuniform cold

quantum electron-ion plasma were presented. Nonlinear

magnetosonic waves in degenerate plasmas were discussed

using the spin-1/2 QMHD model in Ref. 19, and the authors

studied both limited and arbitrary amplitude magnetosonic

soliton. Ren, Wu, and Chu20 derived the dispersion of linear

waves in uniform cold quantum plasma without the spin-1/2

effects. Using the QHD and Maxwell’s equations, nonlinear

electromagnetic wave (EMW) equations for superdense

magnetized plasmas were derived by Shukla et al.21

A generalized set of nonlinear electromagnetic quantum

hydrodynamic equations is derived for magnetized quantum

plasma, including collision, electron spin-1/2, and relativisti-

cally degenerate electron pressure effects,22 and the results

are relevant to dense astrophysical systems. The effects

of strong fields on single particles with spin effect have

attracted experimental interest in the laser field,23 where the

treatment of these studies is based on single particle dynam-

ics. The nonlinear collective processes in quantum plasmas
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with degenerate electrons were presented in details by Shu-

kla and Eliasson.10 Using a classical relativistic model, the

properties of waves in a cold magnetized electron gas includ-

ing the effect of spin dependence were proposed by Ref. 24.

Oraevsky and Semikoz25 have examined the spin waves in

dense magnetized plasma and found the growth rate of the

electromagnetic spin waves in the presence of intense quasi-

monoenergetic fluxes of neutrinos. The influence of the elec-

tron spin-1/2 effect on the propagation of circularly polarized

waves in magnetized plasma has been analyzed by Misra

et al.,26 and new eigenmodes are identified.

In this present work, we analyze the quantum corrections

to the elliptically polarized extraordinary electromagnetic

waves while ignoring quantum electrodynamical (QED)

and relativistic effects. Here, the model is based on the one

component plasma which is one of the basic models in the

condensed matter physics.27,28 This model can be used when

quantum effects are important.29 Besides of its direct astro-

physical applications,28 to model the ionized matter in white

dwarfs,30 outer layers of neutron stars and interiors of heavy

planets.31,32 The quantum effect due to the quantum tunnel-

ling is described by Bohm potential and quantum spin-1/2

effects are characterized by the spin quantum force as well

as spin magnetization current. When spin-1/2 effects are

included, the intrinsic magnetic moment of the plasma con-

stituents gives rise to several new effects, principally due to

the magnetic dipole force and spin magnetization current. The

quantum effects can produce some new aspects of EMWs

in quantum plasmas. Meanwhile, we show that the spin-1/2

effects reduce the group velocity in superdense quantum

plasmas. A wave-packet is a bundle of energy and the group

velocity is the velocity of the traveling bundle. That is to say,

the group velocity represents the speed of energy transport. It

is thus meaningful to study the group velocity in superdense

quantum plasmas in certain astronomical circumstance.

This paper is organized in the following fashion: In

Sec. II, we use the quantum magnetohydrodynamic model to

calculate the dispersion relation of elliptically polarized

extraordinary electromagnetic waves in uniform quantum

plasmas with nonzero external magnetic field. Section III is

devoted to analysis and discussions on the group velocity of

the extraordinary electromagnetic waves, and the cutoffs and

resonances are also analyzed in this section. The conclusion

is given in Sec. IV.

II. ASSUMPTIONS AND EQUATIONS

We suppose that the superdense quantum plasma is

composed of electrons and ions. The ions are assumed to be

stationary since their inertia is too large for them to response

to a high-frequency wave and its quantum effects can be

ignored because of the same reason. Meanwhile, the plasma

is assumed to be embedded in an external magnetic field

B0 ¼ B0êz, where êz is the unit vector along the Z-axis in a

Cartesian coordinate system and B0 is the strength of the

background magnetic field.

The basic equations of electromagnetic waves for

QMHD including the electron spin-1/2 effects are composed

of the equation of motion,

mene
du

dt
¼ �eneðEþ u� BÞ � rPþ neFQ: (1)

The Faraday’s law,

r� E ¼ � @B

@t
(2)

and Maxwell’s equation including the electron magnetiza-

tion spin current,

r� B ¼ l0 Jþ e0
@E

@t
þ Jm

� �
: (3)

Here, we use SI units. d=dt ¼ @=@tþ ðu � rÞ is the hydrody-
namic derivative, me is electron mass, ne is electron number

density, n0 is the equilibrium number density of electrons, e
is the magnitude of the electronic charge, u is the electron

fluid velocity, E and B are the electric and magnetic field

vectors, l0 is the magnetic permeability, e0 is the vacuum

electric conductivity. J ¼ �en0u is the current density due

to free electrons and the electron magnetization spin current

density is given by

Jm ¼ r�M: (4)

Here, the term M ¼ nel2BB=kBTFe is the macroscopic spin

magnetization in a completely degenerate Fermi gas

(so-called Pauli spin magnetization).19,33 Where, lB¼e�h=2me

is the Bohr magneton and kB is the Boltzmann constant. �h
is Planck’s constant divided by 2p. TFe is the electron

Fermi temperature defined as TFe � EFe=kB ¼ ð�h2=2mekBÞ
ð3p2Þ2=3n2=3e , where EFe is the Fermi energy.

In the following equations, every quantity u (representing

u, E, B,M, etc.) has the following form:

u ¼ u0 þ u1; (5)

where u0 is the unperturbed value and u1ð� u0Þ is a small

perturbation

u1 / expð�ixtþ ik � rÞ: (6)

It should be pointed out that the quantum fermionic pressure

in the first equation can be written as9,34

P ¼ 2TFen1; (7)

and n1ð�n0Þ is a small electron density perturbation.

The first order quantum force FQ on an electron with

spin-1/2 effects is16

FQ ¼ �h2

4men0
rr2n1 þ 2lB

�h
rðs � B1Þ; (8)

where the first term in the right hand side of Eq. (8) is associ-

ated with the quantum Bohm potential gradient (correspond-

ing to the quantum corrections in the density fluctuations)

and the second is the spin magnetization force due to the

electron-1/2 spin effects, respectively. The spin evolution

equation for spin quantum plasmas is given by15,19

ds

dt
¼ 2lB

�h
ðs� BÞ: (9)
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The spin-thermal coupling terms in Eq. (9) have been

neglected. Equation (9) is similar to the classical precession

equation for the spin with the spin correction to the magnetic

field.36 In MHD, one knows that the scale lengths are typi-

cally longer than the Larmor radius of the electrons, so the

terms that are quadratic in s can be ignored in the spin evolu-

tion equation (9). To lowest order, the spin inertia can be

neglected for frequencies much below the electron cyclotron

frequencies, which gives the spin equation (9) as s� B ¼ 0,

and has a solution14,16

s ¼ � �h

2
g

lBB0

kBTFe

� �
B̂: (10)

The Langevin parameter gðaÞ ¼ tanhðaÞ is due to the mag-

netization of a spin distribution in thermodynamic equilib-

rium.16 Where, a ¼ lBB0=kBTFe and TFe is the Fermi

temperature of degenerate electrons. As for Maxwellian

plasma, the Fermi temperature TFe will be replaced by the

Maxwellian temperature Te.
Plasma equilibrium is assumed, E0 ¼ 0; u0 ¼ 0. The

perturbed electric field E1 and electron fluid velocity u1 are

in the X-O-Y plane. The wave vector k is along the X-axis.

The basic geometry of the model is described in Fig. 1.

Now, we are considering the propagation of elliptically

polarized extraordinary electromagnetic waves in superdense

quantum plasmas, and the basic linearized equations in such

quantum plasmas system can be obtained in the following:

r� E1 ¼ � @B1

@t
; (11)

r� B1 ¼ l0 J1 þ e0
@E1

@t
þr�M1

� �
; (12)

men0
@u1
@t

¼ �en0ðE1 þ u1 � B0Þ � rPþ n0FQ: (13)

The perturbed electron magnetization density and electron

number density perturbation are given by

M1 ¼ n0l2B
kBTFe

B1 þ n1l2B
kBTFe

B0; (14)

r � E1 ¼ � e

e0
n1: (15)

We focus on the extraordinary electromagnetic wave propa-

gation along the x-axis. From Eqs. (12) to (15), we obtain

r� r� E1ð Þ ¼ 1

v
en0l0

@u1
@t

� 1

c2
@2E1

@t2

�

þ l2B
c2eEFe

@

@t
r r � E1ð Þð Þ � B0½ �

�
; (16)

where c is the speed of light in vacuum and

v � 1� n0l0l
2
B

kBTFe
: (17)

Taking into account the X- and Y-components of electric

field E1, using Fourier transform, we then yield

�ixEx ¼ en0
e0

ux (18)

and

ðk2c2 � x2ÞEy ¼ � ixen0
ve0

uy: (19)

Also, from Eqs. (12) to (15), we derive

@u1
@t

¼� e

me
E1 þ u1 � B0ð Þ þ e0

en0
v2Fr r � E1ð Þ

� e0�h
2

4m2
een0

r2 r r � E1ð Þ½ � � 1

me
gðaÞlBrBz; (20)

where v2F ¼ 2TFe=me is the Fermi velocity. After performing

Fourier transform and taking into account the X- and Y-

components of electron fluid velocity u1, the following rela-

tionship is obtained:

�ixux ¼ � e

me
1þ k2Fk

2

x2
pe

þ �h2k4

4m2
ex

2
pe

 !
Ex � uyxce

� ikgðaÞ e�h

2m2
e

k

x
Ey; (21)

�ixuy ¼ � e

me
Ey þ uxxce: (22)

From Eqs. (18), (19), (21), and (22), the following dispersion

relation of the quantum plasmas is derived

Det
x2

pe � x2 þ v2Fk
2 þ �h2k4

4m2
e

i
vxce

x
ðk2c2 � x2Þ þ gðaÞk2x2

pek
2
B

h i
ixcex x2

pe � vðx2 � k2c2Þ

�������
������� ¼ 0; (23)

FIG. 1. Geometry of extraordinary electromagnetic waves propagating per-

pendicular to B0.
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where, xpe and xce are the electron plasma and the electron

gyro-frequencies, respectively, and k2B ¼ �h=2mexce is an

auxiliary quantity.

It is noted that there is a factor v in the Eq. (23). In the

absence of spin magnetization current, v ¼ 1. But, in the

presence of spin-1/2 effects and at very high electron number

densities, the sign of v can, in principle, be changed from

Eq. (17). Next, we consider two cases of Eq. (23).

A. v51

There is no electron magnetization spin current in this

case and the dispersion relation of Eq. (23) can be expressed

in the form of refractive index which is similar to that

reported in Ref. 34.

n2 ¼ k2c2

x2
¼ 1�x2

pe

x2
� x2

pex
2
ce½1� gðaÞk2k2B�

x2½x2�x2
H � k2v2Fð1þ k2k2qÞ�

: (24)

Here, kq ¼ �h=2meVF is the quantum type wavelength of

electron and xH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

pe þ x2
ce

q
is the upper-hybrid (UH)

resonance frequency.

B. v 6¼ 1

In order to verify all of the quantum effects including

electron magnetization spin current, we derive a new disper-

sion relation in the following form, from which we can

obtain the quantum corrections to the dispersion relation

n2 ¼ k2c2

x2
¼ 1� x2

pe

vx2
� x2

pex
2
ce½1�gðaÞk2k2B�

vx2½x2�x2
H� k2v2Fð1þ k2k2qÞ�

: (25)

There are two different terms which contain the factor v in

Eq. (25). It is found that the v term is due to the influence of

the electron magnetization spin current in the quantum plas-

mas. One can retrieve the former relation of Eq. (24) when

ignoring electron magnetization spin current.

III. ANALYSIS AND DISCUSSIONS

In Sec. II, the dispersion relationship of elliptically

polarized extraordinary electromagnetic waves is derived

and in this section, we examine the influence of quantum

effects on the group velocity. Meanwhile, we discuss the cut-

offs and resonances of extraordinary electromagnetic waves

in such quantum plasmas system.

Ignoring electron magnetization spin current, we have

obtained the dispersion relationship of Eq. (24) which takes

into account the Bohm potential as well as spin quantum

force. It is noted that the quantum Bohm potential and spin

quantum force modify the dispersion relation appreciably.

The Bohm potential leads to a dispersion term �h2k4=4m2
e

in the denominator of the third term in Eq. (24) and the elec-

tron spin-1/2 effect reduces the gyrofrequency by a factor

ð1� gðaÞk2k2BÞ in the numerator of the third term on the right

hand side of Eq. (24). If we ignore all the �h�dependent terms

which stand for the quantum effects, we then obtain classical

extraordinary electromagnetic wave dispersion relation in

Ref. 35.

A. Group velocity of extraordinary waves

We now consider the extraordinary wave group velocity

from the new dispersion relation and obtain the group veloc-

ity relations in the following:

dx1

dk
¼ vg1 ¼ AD� ABþ 2vC

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vðB� DÞp (26)

and

dx2

dk
¼ vg2 ¼ ADþ AB� 2vC

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vðBþ DÞp : (27)

In Eqs. (26) and (27), the corresponding capital letters are

given by

A ¼ kvðc2 þ v2FÞ þ 2k3vv2Fk
2
q; (28a)

B ¼ k2vðc2 þ v2FÞ þ vðx2
H þ k4v2Fk

2
qÞ þ x2

pe; (28b)

C ¼ c2kvð2k2v2F þ x2
HÞ þ kx2

peðv2F þ gðaÞx2
cek

2
BÞ

þ k3v2Fk
2
qð3c2k2vþ 2x2

peÞ; (28c)

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4vE

p
; (28d)

E ¼ c2k2vðk2v2F þ x2
HÞ þ x2

peðk2v2F þ x2
peÞ

þ k2gðaÞx2
cex

2
pek

2
B þ k4v2Fk

2
qðc2k2vþ x2

peÞ: (28e)

Here, vg1 and vg2 are two branches of the group velocity of

extraordinary waves, respectively.

B. Cutoffs and resonances

The cutoffs of the extraordinary wave are found when

n2 is equal to zero in Eq. (25). We can write the resulting

equation for x as follows:

x2
pe

vx2
þ x2

pex
2
ce½1� gðaÞk2k2B�

vx2½x2 � x2
H � k2v2Fð1þ k2k2qÞ�

¼ 1: (29)

When the quantum effects are all ignored and Eq. (29) will

be simplified as the well-known classical cases35

x2 7xxce � x2
pe ¼ 0: (30)

Each of the two signs will give a different cutoff frequency,

we often call these xR and xL. The roots of the two quad-

ratics are

xL ¼ 1

2
½�xce þ ðx2

ce þ 4x2
peÞ1=2�; (31a)

xR ¼ 1

2
½xce þ ðx2

ce þ 4x2
peÞ1=2�: (31b)

Here, including all the quantum effects, and after a few

tricky algebraic steps, one yields the simple expressions as

following:
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xL;Q ¼ 1

2

2ðB� DÞ
v

� 	1=2
; (32a)

xR;Q ¼ 1

2

2ðBþ DÞ
v

� 	1=2
; (32b)

where, the corresponding capital letters are given in Eqs.

(28b), (28d), and (28e), the cutoff frequencies xL;Q and xR;Q

are called the quantum left-hand and right-hand cutoffs,

respectively.

The resonance of the extraordinary wave is found when

n2 is infinity in Eq. (25). And then, one can obtain the result-

ing resonance frequency from Eq. (25)

x2 ¼ x2
H þ k2v2Fð1þ k2k2qÞ: (33)

From the above discussions, we can see that the quantum

effects can modify the characteristics of extraordinary

wave’s cutoffs and resonance.

Next, in order to show the influence of the group veloc-

ity on the quantum effects due to Bohm potential and elec-

tron spin-1/2 effects, we evaluate Eqs. (26) and (27) by

substituting some typical parameters in the dense astrophysi-

cal objects (like the outer shells of magnetized white dwarf

stars),1,37 where the plasma density is n0 ¼ 1034m�3, the

temperature is about 105K and B0 ’ 107T.

Figure 2 shows one of the branches of extraordinary

waves. The Bohm potential effect without spin-1/2 effects is

indicated by dashed curve. The continuous curve stands for

the Bohm potential effect as well as spin-1/2 effects which

are represented by the spin quantum force and electron mag-

netization spin current. Compared to the dashed curve, the

continuous curve is much wider and lower when the wave

number is relatively small. With regard to the group velocity,

the later one is also reduced in the same range of wave

numbers.

Figure 3 represents the comparison chart of the other

branch of extraordinary waves and the Bohm potential effect

is characterized by the dashed curve. The continuous line

stands for Bohm potential effect and spin-1/2 effect. As

shown, the group velocity is somewhat reduced in a certain

range of wave number when spin-1/2 effect is taken into

account.

In the following, Figures 4 and 5 describe the compari-

son of quantum correction to the classical group velocity

which is represented by the large-dashed line. The effect of

quantum correction on the group velocity of extraordinary

electromagnetic waves is apparent. The Bohm potential

FIG. 2. Group velocity of one of the branches of extraordinary waves. The

dashed line is for the Bohm potential effect only, and the continuous line is

considering both the Bohm potential effect and the spin effect. The range of

wave number k is between 8� 101m�1 and 4� 1011m�1.

FIG. 3. Group velocity of the other branches of extraordinary waves. The

dashed line is for the Bohm potential effect only, and the continuous line is

considering both the Bohm potential effect and the spin–1/2 effect. The

range of wave number k is between 8� 101m�1 and 4� 1011m�1.

FIG. 4. Comparison between the Bohm potential correction and classical

group velocity. The dashed line stands for the Bohm potential effect and the

large-dashed line is for classical group velocity. The range of wave number

k is between 8� 101m�1 and 1� 1011m�1.

FIG. 5. Comparison between all the quantum corrections and classical group

velocity. The continuous line stands for all the quantum corrections and the

large-dashed line is for classical group velocity. The range of wave number

k is between 8� 101m�1 and 1� 1011m�1.
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effects or spin-1/2 effect can decrease the group velocity of

the extraordinary electromagnetic waves. Similar to Figure

4, Figure 5 reveals that for the same range of wave number

k, the group velocity of extraordinary electromagnetic waves

becomes much smaller than that in the cases in which the

Bohm potential effect is only considered. The influence of

the Bohm potential effect and electron spin-1/2 effect on the

group velocity of extraordinary waves in quantum plasmas is

also shown in Figures 4 and 5. In order to explain the influ-

ence of the spin quantum force on the dynamics of our sys-

tem, we give the corresponding explanation. The spin

introduces an additional negative pressure-like term in the

quantum momentum equation, and the effect is that the

energy of extraordinary electromagnetic waves may be

depleted for larger values of a ¼ lBB0=kBTFe. We also note

that the spin term represented by gðaÞ and v in Eq. (24) can

dominate the sign of the dispersion relation.

In order to see the influence of different range of the fac-

tor v, we then choose some parameters to make the value of

this factor between 0 and 1, and plot the 3D image later in

Figures 6 and 7. The group velocity of the extraordinary

electromagnetic wave is changed significantly for different

amplitudes of v and wave number k, especially when the

value of v changes from 0 to 1, the group velocity of the

extraordinary electromagnetic wave becomes bigger and

bigger for a fixed wave number (like k ¼ 1� 1010m�1).

With the purpose of studying the influence of the factor

v to the other branches of the group velocity, we also choose

the same parameters and plot its 3D image in Fig. 7. We find

that the existence of the electron spin-1/2 effects can change

the profile of the group velocity. It is known that a wave-

packet is a bundle of energy and the group velocity is the

velocity of the traveling bundle. That is to say, the group

velocity is the speed of the transport of energy. From the

above discussions, we can conclude that the spin-1/2 effects

can change the profile of the group velocity of extraordinary

electromagnetic wave for a certain range of v, and therefore

the speed of the transport of energy is also changed in such

quantum plasmas system.

IV. CONCLUSION

The elliptically polarized extraordinary electromagnetic

waves propagation in superdense magnetized quantum

plasmas with electron spin-1/2 effect is investigated. The

modified dispersion relation and group velocity of extraordi-

nary electromagnetic waves in spin-1/2 quantum plasmas are

obtained. Our results show that existence of quantum effects

can reduce the group velocity of electromagnetic waves in

a superdense quantum magnetoplasma and the quantum

corrections have significant effects on the dispersion proper-

ties of extraordinary electromagnetic waves. We roughly

FIG. 6. Surface plot of one of the branches of

the group velocity of extraordinary electromag-

netic wave.The range of v is between 0 and 1.

The range of wave number k is between

8� 101m�1 and 1� 1011m�1.

FIG. 7. Surface plot of the other branches of the

group velocity of extraordinary electromagnetic

wave in different ranges of v and wave vector

k. The range of v is between 0 and 1. The range

of wave vector k is between 8� 101m�1 and

1� 1011m�1.
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investigated the cutoffs and resonances of extraordinary

electromagnetic waves in such quantum plasmas system, and

found the cutoffs and resonances are modified due to the

quantum corrections. We also found that the quantum spin-

1/2 effects can reduce the energy transport in such quantum

plasmas system. To summarize, the modified dispersion rela-

tions for high-frequency extraordinary electromagnetic

waves in a superdense quantum magnetoplasma are obtained

by taking into account the quantum forces (including elec-

tron tunneling effects and electron spin-1/2 effects). The

electron magnetization spin current was also included in the

Maxwell’s equations. The study of quantum correction rela-

tions may be useful at least from the diagnostic points of

view, since the observation of the propagation characteristics

of the waves might be used in order to determine the physi-

cal parameters in plasmas.26 Our results and conclusion are

important for the understanding of the propagation character-

istics of high-frequency elliptically polarized electromag-

netic waves in superdense magnetoplasmas such as those in

the dense astrophysical plasmas (the atmospheres of neutron

stars, magnetars, and the interior and outer shell of massive

white dwarfs)38–40 in which electron spin effects can play an

important role.
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