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Abstract—Titanium alloys have attracted more attention as
biomaterials. Plasma ion implantation is utilized in this paper to
improve the bioactivity, wear resistance, and corrosion resistance
of Ti6Al4V alloy. As an effective surface-modification technique,
plasma ion implantation eliminates the limitation of light of sight
compared to conventional beam ion implantation. The plasma is
excited by an RF power ranging from 200 to 400 W with sample
bias of 20 kV. The results show the improvement in hardness,
corrosion resistance, and tribological properties. Longer treat-
ment time or higher RF power leads to a higher wear resistance.
The friction coefficient rapidly increases at 500 s with the sample
treated with the RF power of 400 W, while it changes abruptly at
1500 s with the sample processed with the RF power of 600 W.
After the treatment, the corrosion resistance is considerably im-
proved, which demonstrates that the potential of all the samples
shift positively while the corrosion current decreases substantially.
The corrosion current may decrease by a factor of six compared
to that of the control sample. Precipitates containing phosphorous
and calcium appear, indicating a better activity while nothing
grows on the untreated sample.

Index Terms—Bioactivity, biomaterials, oxygen plasma, plasma
ion implantation, titanium.

1. INTRODUCTION

ARD tissues are often damaged due to accidents, aging,

and other causes. It is a common practice to surgically
substitute the damaged hard tissues with artificial replacements.
Titanium and titanium alloys are widely used as hard-tissue
replacements in artificial bones, joints, and dental implants.
However, disadvantages such as a relatively poor wear resis-
tance and poor bioactivity have limited its application to some
extent. Increasing the tissue-bonding properties of titanium or
titanium alloy implants for use in orthopedics and dentistry
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has recently become an active area of interest [1]. To en-
hance the surface bioactivity, elements such as Ca, Na, P, etc.,
have been utilized and implanted into titanium alloys [2]-[6].
Maitz et al. [6] performed sodium ion implantation and de-
position using a high-voltage glow discharge plasma of evap-
orated sodium. The surface becomes active, as indicated by
more calcium-phosphate precipitation. Hanawa et al. has in-
vestigated early bone formation on calcium-ion-implanted ti-
tanium, which is inserted into a rat tibia. Their results reveal
that the Ca** implanted titanium is superior to the unim-
planted titanium from the perspective of bone conduction [2].
Krupa et al. [4] investigated the effects of a dual implantation of
calcium and phosphorus on the structure, corrosion resistance,
and biocompatibility of titanium. It was found that the (Ca +
P)-implanted titanium possessed improved corrosion resistance
and biocompatibility.

Of these elements biologically suitable for hard tissue re-
placements, oxygen is seldom investigated, which may be due
to the fact that the native TiO5 film on the surface of titanium
alloys is inert. In this paper, oxygen ion was implanted into
titanium alloys to increase the bioactivity, in addition to the
improvement of the wear and corrosion resistances. Oxygen
implantation was performed using a plasma immersion method.
Plasma immersion ion implantation (PIII) is more preferred due
to its capability to treat irregularly shaped components without
manipulation of the holder compared to conventional ion-beam
ion implantation [7]-[9]. It is attributed to a special acceleration
mechanism of the plasma sheath during PIII processes and the
plasma sheath being conformal to the components to be treated
to some extent. In this way, the practical components such as
a tooth, hip, and artificial heart can be treated uniformly and
easily. In fact, another advantage that is more interesting is the
batch-treatment capability. For conventional ion-beam implan-
tation, the components have to be implanted one by one. In
contrast, many components may be implanted simultaneously
during PIII. Consequently, the process efficiency may be higher.

II. EXPERIMENT

The samples were a commercial titanium alloy (Ti6Al4V),
with composition of Al: 6.6 wt.%, V: 4.2 wt.%, Si: 0.07
wt.%, Fe: 0.3 wt.%, C: 0.03 wt.%, 0:0.14 wt.%, N: 0.015
wt.%, H: 0.003 wt.%, and Ti: balance. The sample dimen-
sions were 20 x 20 x 1 mm. One side of the samples
were polished to a mirror finish. After ultrasonic cleaning,
the samples were loaded into a vacuum chamber. Before
PIII, the samples were sputter cleaned with argon plasma
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TABLE 1
INSTRUMENTAL PARAMETERS DURING PIII PROCESSES

Sample Gas Bias Pulse Pulse rf Treatment
No. pressure voltage frequency duration power time
/pa /kv /Hz /us A /h
1 0.4 20 100 20 400 1
2 0.4 20 100 20 200 1
3 0.4 20 100 20 600 1
4 0.4 20 100 20 400 1.5
5 0.4 20 100 20 400 0.5

ion bombardment. The pretreatment instrumental parame-
ters were: RF power =400 W with a reflected power of
around 10 W, pulsed voltage applied to the sample = 10 kV,
pulse frequency = 100 Hz, pulse duration = 20 us, gas flow =
5 sccm, and cleaning time = 30 min. Afterwards, oxygen was
bled into the vacuum chamber and oxygen plasma was sus-
tained by the RF power supply. The dominant ions were OF
but some O were also implanted [10]. The plasma density
was maintained at about 1.0 x 10'% jons/m>, and the electron
temperature was 2-5 eV. The PIII instrumental parameters are
shown in Table I. Two series of experiments were conducted
to disclose the effects of the RF power and treatment time on
the surface properties. After the treatment, the samples were
characterized for their surface hardness, tribological properties,
corrosion resistance, and bioactivity, etc. The hardness was
measured using a digital microhardness tester (HVS-1000).
The applied load was 10 g with a press time of 20 s. To
evaluate the corrosion behavior, potentiodynamic-polarization
tests were conducted. The tests were carried out in a 0.9-wt.%
NaCl solution and the scanning rate was 2 mV/s. The friction
coefficients of all the samples were obtained using a ball on
disk with 70-g load and rotation speed of 50 r/min. The friction
couple was GCr15 with a diameter of 6.35 mm. To evaluate the
bioactivity of the treated samples, a simulated-body-fluid (SBF)
test was performed. After ultrasonically cleaned in acetone
and rinsed in deionized water, the samples were soaked in the
SBF solution. The SBF solution was buffered at pH 7.4 with
trimethanol aminomethane-HCI, and the ionic concentrations
in the solution are nearly equal to those in the human-blood
plasma. If a bonelike apatite can form on the surface after
soaked in the SBF for a period, it is thought to be bioactive [11].

III. RESULTS

Oxygen plasma ion implantation effectively improves the
surface hardness, as shown in Fig. 1. The hardness using a
nanoindentor for the sample 1 is shown in Fig. 2 and compared
to results of Ueda et al. [12]. The hardness of the titanium oxide
is found to be lower than that of titanium nitride. The hardness
improvement reported here may be attributed to the irradiation
effect and formation of titanium oxide [10]. The surface hard-
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Fig. 1. Effect of processing parameters on a surface hardness. (a) Treatment

time. (b) RF power.
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Fig. 2. Surface hardness of Sample 1 evaluated using nanoindentor.

ness has been reported to improve by 2.2 times after oxygen
implantation into the titanium with a dose of 3.0 x 1017 /cm?.
A higher RF power is helpful in improving the surface hardness
while the effect of a longer treatment time is not evident [13],
[14] . The tribological properties as evaluated using the ball-
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Fig. 3. Effects of processing parameters on a surface hardness. (a) Untreated

sample. (b) Effect of the treatment time. (c) Effect of the RF power. (Color
version available online at http://ieeexplore.ieee.org.)

on-disk tests are shown in Fig. 3. For the control sample, the
friction coefficients rapidly rise to nearly 0.5-0.6 and show
small fluctuations until the end of the test. The wear track dis-
closes adhesion, tear, and oxidation, and the track boundary is
evidently observed. In contrast, the treated samples demonstrate
improved tribological properties. A lower friction coefficient be
achieved even if the top surface is rapidly damaged for the sam-
ple treated for 30 min, as shown in Fig. 3(c). The treatment time
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Fig. 4. Polarization curves obtained in a 0.9-wt.% NaCl solution. (a) Effect of
the RF power. (b) Effect of the treatment time.

has a critical influence on “punchthrough” The “punchthrough”
occurs earlier for the sample treated for less time (e.g., 30 min).
In contrast, the longer treatment time (e.g., 90 min) yields
enhanced tribological properties demonstrated by the delayed
“punchthrough.” As shown in Fig. 3(b), the “punchthrough” is
substantially influenced by the RF power. A higher RF power
helps to improve the tribilogical properties. In fact, increase of
the RF power or the treatment time means a larger implantation
dose, which may be responsible for the enhancement of the
surface properties.

Polarization tests were used to evaluate the corrosion re-
sistance of all the samples. Oxygen plasma ion implantation
improves the corrosion resistance of the treated samples. The
corrosion potential of all the treated samples shifts positively
while the corrosion current decreases compared to that of the
untreated sample. The increase of the RF power has a positive
effect on the corrosion resistance. As shown in Fig. 4(a), the
higher the RF power, the more positive is the corrosion poten-
tial. For example, the corrosion potentials are —0.102, —0.022,
and 0.05 V for the samples treated with the power of 200, 400,
and 600 W, respectively, while the corrosion potential of the
untreated sample is —0.438 V. In contrast, the longer treatment
time is not beneficial, as shown in Fig. 4(b). For example,
the corrosion potentials of the samples treated for 30, 60, and
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Fig. 5. SEM morphology showing the oxygen-implantation-induced bio-
activity. (a) Untreated sample. (b) Treated sample.

90 min, respectively are 0.029, —0.022, and —0.126 V. Of these
three samples, the sample treated with the longest time (90 min)
also demonstrates the largest corrosion current.

After the samples were immersed in the SBF fluid in six days,
the sample surface was observed using scanning electronic mi-
croscopy (SEM) as shown in Fig. 5. The unimplanted titanium
surface is quite smooth, and only very small particles sparsely
distributed can be observed. In contrast, the implanted titanium
samples possess a rough surface, and balllike or chainlike
precipitates can be observed. The bioactivity has been improved
after the oxygen plasma ion implantation. Oxygen implantation
induces more rapid precipitation compared to the untreated
sample. The precipitates contain calcium and phosphorous as
indicated by an energy-dispersive-spectroscopy (EDS) analysis,
although the amount is small, but it may be due to a short
immersion time.

IV. DISCUSSION

Oxygen plasma ion implantation has been demonstrated to
effectively improve the surface properties of biomedical tita-
nium alloys. The ion range is very small, (only 17-18 nm in
this paper according to a TRIM program) and diffusion of the
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injected ions is small due to the low temperature (lower than
250 °C). However, it leads to improvements in surface hardness,
although the penetration depth of the indenter approaches 1 um,
which is much larger than the ion range. This improvement,
which is to a much deeper region than the ion penetration range
has also been found elsewhere. The TiO may be formed in cases
of a low processing temperature and low implantation dose
described in this paper [12]. It was reported that TiO formed at
a lower temperature while TiO2 formed at a higher temperature
[14], [15]. Meanwhile, TiO-TiO5 transformation is difficult
at a low temperature even if a large dose is implanted. Pin-
on-disk tests show that oxygen ion implantation improves the
tribological properties of the treated samples [15]. The longer
the implementation time or higher the RF power, the more
evident is the wear resistance improvement. This is consistent in
that a higher dose is beneficial for mechanical properties. The
titanium oxide film is responsible for the enhancement of the
corrosion resistance [13], [14]. As reported by Armstrong and
Quinn, the oxide layer (thinner than 1.5 nm) may effectively
block the charge transfer at the beginning of the oxidation
processes. A thick oxide layer is formed after oxygen ion
implantation [16]. This thick layer hinders the charge transfer
more effectively as reflected by the reduced corrosion current
of the treated samples.

Oxygen is one of the frequently used elements to
strengthen the surface properties such as wear, corrosion, out-
gassing, etc. Titanium oxide is known to have varying stoi-
chiometries, and the common compounds are TizsO to Ti2O,
Ti302, TIO, Ti203, Ti305 and T102 Rutile titanium ox-
ide ceramics, TiOy and TiOy films, which are prepared by
thermal oxidation, ion beam-assisted deposition (IBAD), or
ion implantation [18]-[22], generally have blood compatibil-
ity better than that of clinically biomaterials, such as low-
temperature isotropic carbon (LTIC) [17]. It has been suggested
that the TiO film possesses better blood compatibility
than LTIC because of its suitable surface (interface) en-
ergy properties and the behaviors of adsorbed proteins.
Leng et al. [21], [22] suggest that it is related to the semi-
conductor behavior (n-type) of the TiO films. TiO films
have become more interesting as blood-contact materials [21].
However, oxygen implantation has seldom been reported to
enhance the bioactivity of biomedical titanium alloys used
in hard tissue replacements. The native oxide films are inert
and have no bioactivity as demonstrated here and in other
works in the literature. However, the top surface may be
activated after oxygen plasma implantation. As such, ion
implantation is not a steady-state process, and many ef-
fects may be achieved. Based on the assumption of the
semiconductor behavior (n-type) of the oxygen-implanted
titanium surface with proper processing parameters [21], it
can be understood more easily that oxygen implantation may
achieve better bioactivity. This n-type semiconductor effect is
consistent with the assumption of apitate formation. In water
with a neutral pH, a small negative charge forms on the surface
of the titanium due to a fraction of the acidic hydroxides being
deprotonated, while almost all of the basic and a large part of
the acidic groups are still present in a neutral form [23]. In
this way, the calcium ions from the body fluid adsorb onto the
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titanium surface because of a coulombic attraction. When more
calcium ions adsorb, more phosphate ions are subsequently
attracted, thereby accelerating the formation of the calcium
phosphate. From this viewpoint, the semiconductor behavior
of the oxygen-implanted titanium is helpful in improving the
surface bioactivity.

V. CONCLUSION

Oxygen plasma ion implantation has been utilized to improve
the surface properties of biomedical titanium alloys. After
the treatment, the surface hardness is increased depending on
the processing parameters. The treated samples demonstrate
better tribological properties, which are indicated by lower
friction coefficients. The corrosion resistance is also improved
by oxygen plasma ion implantation, which is demonstrated by
a lower corrosion current and more positive corrosion potential
compared to those of the untreated sample. The bioactivity of
the titanium alloys is effectively improved. It may be explained
by the semiconductor behavior of the treated surfaces. Further
work has to be done to disclose the mechanism and optimize
the processing parameters.
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