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ARTICLE INFO ABSTRACT

Keywords: Radiation-induced intestinal injury (RIII), a common gastrointestinal complication caused by radiotherapy on
Radiation-induced intestinal injury pelvic, abdominal and retroperitoneal tumors, seriously affects the life quality of patients and may result in
Ferroptosis

termination of radiotherapy. At present, the pathogenesis of RIII has not been fully understood. Herein, we
demonstrated that ferroptosis played a critical role in RIII occurrence. The RNA sequencing analysis strongly
hinted ferroptosis was involved in RIII mice. In line with this, the levels of 4-hydroxynonenal (4-HNE) and
malondialdehyde (MDA), markers of lipid peroxidation, remarkably increased in RIII mice. And the ferroptosis
inhibitor, Ferrostatin-1 (Fer-1), improved the mice survival and alleviated intestinal fibrosis in vivo. Moreover,
our results revealed that arachidonic acid (AA) enhanced ferroptosis in cultured intestinal epithelial cells (IECs)
and organoids in vitro after irradiation, and AA gavage aggravated RIII in mice. Mechanistic studies revealed the
level of ACSL4 protein significantly increased in mouse jejunums and IECs after irradiation. Radiation-induced
ferroptosis in IECs was also prevented following ACSL4 knockdown or with the function inhibitor of ACSL4.
Furthermore, we found that transcription of ACSL4 induced by irradiation was regulated by STAT1/IRF1 axis,
and AMPK activation triggered by AA negatively regulated radiation-induced ferroptosis. Taken together, our
results suggest that ferroptosis mediates RIII and reducing dietary AA intake as well as targeting the STAT1-IRF1-
ACSL4 axis or AMPK may be the potential approaches to alleviate RIIL

Lipid peroxidation
Arachidonic acid
ACSL4

1. Introduction

Radiation-induced intestinal injury (RIII) is a common gastrointes-
tinal complication caused by radiotherapy on pelvic, abdominal, and
retroperitoneal tumors. Up to 90% of patients develop acute gastroin-
testinal symptoms (such as abdominal pain, diarrhea, bloating, etc.)
within three months after abdominopelvic irradiation and at least 50%
of the patients experience chronic gastrointestinal symptoms (such as
fibrosis, obliterating vasculitis, atrophy, etc.) which seriously affect

their quality of life [1-4]. Although pathogenesis of RIII is still not fully
understood, various studies reported that epithelial injury, impaired
vascular systems as well as the disordered gut immune and microbiota
are involved in RIII [5,6]. At present, no unified and effective methods
are available for clinical prevention and treatment of RIIL

Ferroptosis is a recently discovered form of regulated necrosis driven
by iron-dependent phospholipid peroxidation [7]. Accumulation of iron,
increased reactive oxygen species (ROS) production, shrunken mito-
chondria, and condensed mitochondrial membranes are typical features
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of ferroptosis [8]. Ferroptosis is regulated by multiple cellular metabolic
events, including redox homeostasis, metabolism of iron, lipids and
amino acids [9]. Recently, ferroptosis has been implicated in multiple
diseases, including ischemic heart disease, stroke, kidney failure, liver
damage, neurodegenerative diseases and inflammatory bowel disease
[9-11]. Moreover, ferroptosis also functions as a tumor suppression
mechanism via promoting the death of cancer cells and activating
anti-tumor immunity [12]. Intriguingly, emerging evidences suggest
that ferroptosis facilitates death of cancer cells in radiotherapy but at the
same time mediates radiation-induced organs injuries [13,14]. Despite
having been mentioned in some studies [15,16], the exact role of fer-
roptosis in RIII development, and the mechanism underlying ferroptosis
induced by ionizing radiation (IR) in intestines are still not clear.

Ferroptosis is controlled by numerous metabolism-related proteins.
Acyl-CoA synthetase long chain family member 4 (ACSL4) is one of the
critical drivers of ferroptosis. ACSL4 ligates polyunsaturated fatty acids
(PUFAs) especially arachidonic acid (AA) with coenzyme A, thus facil-
itating the esterification of PUFAs-CoA into phospholipids, and ulti-
mately promotes formation of phospholipid hydroperoxides (PLOOHSs)
which act as major executioners of ferroptosis [17,18]. ACSL4 has been
shown to contribute to multiple ferroptosis-related diseases and tumor
suppression [19-21]. Moreover, IR induces expression of ACSL4,
resulting in ferroptosis of cancer cells. Depletion of ACSL4 largely sup-
presses radiation-induced ferroptosis and promotes radioresistance
[13]. However, how ACSL4 is upregulated by IR has not been revealed.
In addition, owing to the differences between cancer and normal cells,
the role of ACSL4 in damages of organs induced by IR still also remains
unknown.

In the present study, we found that IR induced ferroptosis in the je-
junums of mice. Moreover, intestinal injury and IECs damage caused by
IR were distinctly aggravated by the additional AA, and were alleviated
through inhibiting ferroptosis, indicating that AA-enhanced ferroptosis
was involved in RIII. Mechanistic studies revealed that IR induced fer-
roptosis via activating STAT1-IRF1-ACSL4 pathway and AMPK activa-
tion triggered by AA negatively regulated the radiation-induced
ferroptosis. These results provide some hints that ferroptosis and STAT1-
IRF1-ACSL4 axis or AMPK are potential targets to alleviate RIII clini-
cally, and limiting excessive dietary intake of AA would be beneficial.

2. Materials and methods
2.1. Animals

Male C57BL/6J mice aged 6-8 weeks (21-25 g) were purchased from
GemPharmatech Co. Ltd (Nanjing, China). Mice were housed under
specific-pathogen-free environment with a 12/12-h light/dark cycle,
and were provided with free access to water and food. All animal studies
were conducted according to protocols approved by the Ethical Com-
mittee of Experimental Animals of Hefei Institutes of Physical Science,
Chinese Academy of Sciences (Code of Ethics: SWYX-DW-2021-64).

2.2. Cell culture

The human intestinal epithelial cell line FHs74Int, purchased from
American Type Culture Collection (Manassas, VA, USA), was cultured in
RPMI 1640 medium (Gibco, Carlsbad, CA, USA) supplemented with 10%
fetal bovine serum (Gibco), 100 pg/mL streptomycin (Gibco) and 100 U/
mL penicillin (Gibco). Cells were maintained at 37 °C in a humidified
incubator with 5% CO5 and 95% air.

2.3. Mouse intestinal organoids culture

Mouse crypt isolation and organoid establishment were performed as
previously described [22]. Briefly, the jejunum fragments were incu-
bated in EDTA (2 mM) with PBS for 30 min on ice. After removing EDTA
solution, the jejunum fragments were gently washed with cold PBS. The
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crypt-villus was collected through scraping the inner side of intestine
and resuspended in PBS. After standing for 5 min, the sediment was
retained and passed through a 70 pm cell strainer (Biosharp, Hefei,
China). The isolated crypts were centrifuged at 65xg for 5 min and
resuspended in matrigel (Corning, Glendale, AZ, USA) for culture and
formation of organoids. For irradiation treatment, organoids were
seeded into 48-well plates at a density of ~100 organoids/20 pL
Matrigel per well.

Organoid survival assays were performed as described previously
[23]. Briefly, the number of live/dead organoids in each group was
counted on day 9 after IR, and the ratio of organoid survival was
calculated. Live organoids fulfil the following criteria: the diameter of
organoid >30 pm, with solid or cystic structure. The dead organoids
were identified by the characteristics, the structural collapse and the
presence of dispersed cells or dark debris where the organoid was pre-
viously located. The sizes of live organoids were measured with the
software ImageJ (National Institutes of Health).

2.4. Irradiation treatment

Mice were anesthetized and irradiated with Elekta Infinity linear
accelerator (Elekta, Stockholm, Sweden) at a dose rate of 6 Gy/min. For
RNA sequencing (RNAseq) analysis, mice were irradiated with a non-
lethal dose of 11 Gy total abdominal irradiation (ABI). For survival
and intestinal fibrosis measurements, mice were irradiated with doses of
15/17 Gy or 14 Gy ABI, respectively. To inhibit ferroptosis in vivo, mice
were intraperitoneal injected with Ferrostatin-1 (Fer-1; MCE, Shanghai,
China) at a dose of 5 mg/kg body weight per day. Fer-1 administration
was started at 24 h before ABI and lasted for 14 days post ABI. The
corresponding control mice were intraperitoneally injected with Vehicle
solution (DMSO + PEG300+Tween-80+saline). To verify the effect of
AA (MCE) intake on RIII, AA gavage at a dose of 10 mg/mice per day was
started at 24 h before 15 Gy ABI and lasted for 14 days post ABI [24].
The survival analysis of mice was performed with the software Graph-
Pad Prism 7.0 (GraphPad Software, La Jolla, CA, USA) using
Kaplan-Meier statistics with a log-rank test.

Cells and mouse intestinal organoids were irradiated with an
XHAG600D X-ray irradiator (SHINVA, Zibo, Shandong, China) at a dose
rate of 0.189 Gy/min in the presence or absence of AA, a-Linolenic acid
(aLA; MCE), Linoleic acid (LA; MCE), Docosahexaenoic acid (DHA;
MCE), Fer-1 or RSL3 (MCE). Cells or organoids were pretreated with
PUFAs, Fer-1 or RSL3 for 24 h before IR.

2.5. Histological and immunohistochemical analysis

The jejunums of mice were fixed with 10% formalin and embedded
in paraffin. Sections of jejunums (3 pm) were deparaffinized and rehy-
drated, and the tissue slides were then stained with hematoxylin and
eosin. Collagen fibers were visualized with Masson’s trichrome staining.
For immunohistochemical analysis, tissue slides were incubated with
anti-4-Hydroxynonenal (4-HNE) antibody (0.1 pg/mL; R&D Systems,
Minneapolis, MN, USA) at 4 °C overnight followed by incubation with
HRP-conjugated goat anti-mouse IgG H&L (1:2000; Abcam, Cambridge,
MA, USA). After incubating with streptavidin peroxidase, slides were
visualized using DAB substrate (Beyotime Biotechnology, Shanghai,
China). Images were captured with Pannoramic Scan (3DHISTECH Ltd.,
Budapest, Hungary). The villus height, crypt depth and the thickness of
the jejunal submucosa fibrous layer were measured with the ImageJ
software (National Institutes of Health, Bethesda, MD, USA). The level of
4-HNE staining was quantified with ImagePro Plus (Media Cybernetics,
Rockville, MD, USA).

2.6. RNA sequencing analysis

Three paired jejunum samples cut from RIII and control mice were
collected at 4 days after ABI. The total RNA extraction, integrity
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checking, amplification, labeling, purification as well as gene expression
sequencing analysis were carried out by SeqHealth Tech (Wuhan,
China). The differential expression genes (DEG) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment were analyzed as described
in Ref.[25].

2.7. MDA measurement

Jejunums were homogenized in Cell lysis buffer for western blotting
(Beyotime Biotechnology), and the supernatant was harvested for pro-
tein concentration and MDA measurements after centrifugation
(12,000%g, 10 min). The content of MDA in jejunums of mice was
measured with MDA Detection Kit (Beyotime Biotechnology) according
to the manufacturer’s instructions. Briefly, the supernatant was mixed
with the MDA detection solution and heated at 100 °C for 15 min. After
cooling, the mixture was centrifuged and the supernatant was harvested
for the measurement of optical density (OD) value at 532 nm with a
microplate reader (Thermo Scientific, Waltham, MA, USA). The absolute
content of MDA was calculated according to a standard curve.

2.8. Quantification of AA

Jejunums were cut into small pieces and homogenized with pre-
cooled PBS (adding 9 mL PBS to every gram of tissue). The homoge-
nate was further broken with ultrasound and centrifuged at 5000 x g for
10 min. The supernatant of homogenate was subsequently collected for
AA detection with an enzyme-linked immunosorbent assay (ELISA),
following the manufacturer’s instructions (Sangon Biotech, Shanghai,
China).

2.9. Cell death assays

The dead cells were detected with propidium iodide (PI; Beyotime
Biotechnology) staining and flow cytometry at 120 h post IR. For PI
staining, cells were collected after trypsinization and resuspended in
PBS containing PI (5 pg/mL). After incubation for 20 min at room
temperature, the cells were washed with PBS and analyzed with a flow
cytometer (Accuri C6, BD Biosciences, San Jose, CA, USA).

2.10. Detection of lipid peroxidation with BODIPY-C11 staining

The level of lipid peroxidation was measured with BODIPY-C11
staining at 72 h post IR. Cells were collected after trypsinization and
resuspended in PBS containing BODIPY 581/591C11 dye (5 pM, Invi-
trogen, Waltham, MA, USA). After incubation for 30 min at 37 °C in a
humidified incubator, the cells were washed with PBS and analyzed with
a flow cytometer (Accuri C6, BD Biosciences).

2.11. Western blotting

The whole proteins from jejunums of mice and FHs74Int cells were
extracted with RIPA lysis buffer (Beyotime Biotechnology). BCA protein
assay kit (Beyotime Biotechnology) was used to determine the concen-
tration of protein. Proteins were separated with SDS-PAGE and trans-
ferred to PVDF membranes (Merck Millipore, Darmstadt, Germany)
followed by blocking with 5% skim milk (BD/Difco, Sparks, MD, USA).
The various primary antibodies used in the experiments were as follows:
anti-GPX4 (1:1000; Protein Tech Group, Wuhan, China), anti-ACSL4
(1:1000; ABclonal, Wuhan, China), anti-pSTAT1 (Tyr701) (1:1000;
Cell Signaling Technology, Beverly, MA, USA), anti-STAT1 (1:1000;
Protein Tech Group), anti-IRF1 (1:1000; ABclonal), anti-AMPKa
(1:1000; Cell Signaling Technology), anti-pAMPKa (Thr172) (1:1000;
Cell Signaling Technology) and anti-p-actin (1:1000; Protein Tech
Group). After incubation with primary antibodies and washing with
TBST, membranes were incubated with IRDye-conjugated secondary
antibodies (1:10000; Li-COR Biosciences, Lincoln, NE, USA). Images of
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immunoreactive bands were captured with Odyssey CLx Infrared Im-
aging system (Li-COR Biosciences) and quantified with ImageJ software
(National Institutes of Health).

2.12. qRT-PCR

The total RNA from jejunums of mice and FHs74Int cells was
extracted with HiPure Total RNA Mini Kit (Magen, Guangzhou, China)
and subjected to cDNA synthesis with Hifair II 1st Strand cDNA Syn-
thesis SuperMix for qPCR (gDNA digester plus) kit (Yeasen Biotech-
nology, Shanghai, China). The qPCR was performed with Hifair gPCR
SYBR Green Master Mix (No Rox) kit (Yeasen Biotechnology) on a Roche
480 Light Cycler. The primers used for PCR amplification are shown as
follows: 5-ACTGGCCGACCTAAGGGAG-3, 5-GCCAAAGGCAAGTAGC-
CAATA-3' (ACSL4) and 5-CTGGGACGACATGGAGAAAA-3, 5-AAG-
GAAGGCTGGAAGAGTGC-3' (ACTB). ACTB was used as a normalizing
control. The fold changes of mRNA were calculated with the 2744Ct
method.

2.13. Small interfering RNA transfection

Cells were transfected with negative control RNA sequence (siNC) or
small interfering RNA targeted to ACSL4 or STAT1 (GenePharma,
Shanghai, China) with Lipofectamine 2000 Transfection Reagent (Invi-
trogen). The target sequences of siRNA are as follows: GGGAGTGAT-
GATGCATCATAGCAAT (ACSL4); GCACCTGCAATTGAAAGAA (STAT1);
AGACCAGAGCAGGAACAAG (IRF1) and ATGATGTCAGATGGTGAATTT
(AMPKa). Cells were used for the further experiments at 48 h after
transfection.

2.14. Statistical analysis

Data were presented as mean + SD. Differences were evaluated by
using Student’s t-test with SPSS v21.0 software (SPSS, USA), and p <
0.05 was considered a statistically significant difference.

3. Results
3.1. Ferroptosis occurs in jejunum of mice after ABI

Recently, multiple studies suggested that ROS production and lipid
peroxidation induced by IR played important roles in RIII occurrence
[26-28]. Considering that ROS accumulation and excessive lipid per-
oxidation were critical factors triggering ferroptosis, we hypothesized
that ferroptosis was related to RIII. A mouse RIII model with obvious
destruction of jejunum architecture and significant reduction in villus
height to crypt depth ratio was established following ABI (Fig. 1A and
B), and the jejunum of mice was collected to perform RNAseq analysis.
The DEG analysis results showed that 2108 genes were up-regulated
while 2715 genes were down-regulated in jejunum on the fourth day
(D4) after ABI (Fig. 1C). Moreover, KEGG pathway enrichment analysis
showed that partial DEGs were enriched in ferroptosis (Fig. 1D), which
supported our hypothesis that ferroptosis was related to RIII. Accord-
ingly, the gene expression profile showed that ferroptosis-promoting
genes such as ACSL4 and heme oxygenase 1 (HMOX1) were remark-
ably upregulated, whereas ferroptosis-inhibiting genes such as gluta-
thione peroxidase 4 (GPX4) and solute carrier family 3 member 2
(SLC3A2) were significantly downregulated in RIII specimens (Fig. 1E).
Moreover, we found significant decrease of GPX4 protein level in
jejunum after IR, which was consistent with the results of gene expres-
sion analysis (Fig. 1F and G). Taken together, these results indicate that
ferroptosis may be involved in RIIL

We next detected the accumulation of lipid peroxidation products
such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), which
were characteristics of ferroptosis, to confirm that ferroptosis was
involved in RIIl. As shown in Fig. 1H-J, the RIII group displayed
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Fig. 1. IR induces ferroptosis in mice jejunum. (A) Representative images of H&E staining of jejunum sections from control and irradiated mice at D4 after 11 Gy ABIL
Scale bar, 100 pm. (B) Radio of the villus height to crypt depth in jejunum sections at D4 after 11 Gy ABI (n = 3). (C) Differentially expressed genes in jejunum
samples harvested from control and RIII mice. (D) KEGG pathway enrichment analysis enriched by DEGs. (E) The heatmap of ferroptosis-related genes expression in
jejunum samples from control and RIII mice (n = 3). (F) Western blot of GPX4 in the jejunum samples from control mice and irradiated mice at the indicated times
post 11 Gy of ABI. Quantification of GPX4 expression is depicted in (G). (H) Representative immunohistochemistry images of 4-HNE in the jejunum sections of
control and irradiated mice at D4 after 11 Gy of ABI. Scale bar, 50 pm. Quantification of the 4-HNE staining is depicted in (I), n = 3. (J) MDA levels in the jejunum
samples from control and irradiated mice at D2 after 11 Gy of ABI (n = 3). *: p < 0.05, **: p < 0.01.

significantly increased 4-HNE and MDA levels compared with the con-
trol group. It was also noticed that the positive staining of 4-HNE was
predominately in the intestinal epithelial cells (IECs) of jejunum
(Fig. 1H). According to the findings described above, we concluded that
ferroptosis was induced in the jejunum of mice after ABI.

3.2. Inhibition of ferroptosis alleviates RIII in mice

To clarify the role of ferroptosis in RIII, we used Fer-1, a selective
small-molecule inhibitor of ferroptosis, to treat mice before IR and
assessed the survival and intestinal fibrosis (Fig. 2A). In the survival
experiment, mice were exposed to 17 Gy ABI and the results showed that
Fer-1 significantly delayed the death of mice (Fig. 2B). Moreover, at 12
weeks after exposure to 14 Gy ABI, we observed typical morphological
features of intestinal fibrosis, fibrotic submucosa thickening and hy-
perplasia of muscular layer (Fig. 2C). Fer-1 treatment significantly
alleviated the radiation-induced thickening of submucosa fibrous layer,
which indicated that ferroptosis promoted intestinal fibrosis induced by
IR (Fig. 2C and D). Taken together, these results suggested that ferrop-
tosis played an important role in RIII and inhibiting ferroptosis could
alleviate RIII.

3.3. AA enhances radiation-induced ferroptosis and RIIT

Since IECs function as a physical and biochemical barrier that sep-
arates host tissue from gut microbiome to maintain intestinal

homeostasis, dysfunction of IECs caused by IR was closely associated
with RIII [5]. In the present study, immunohistochemical analysis
showed the increase of 4-HNE level in IECs following ABI, indicating IR
may induce ferroptosis in IECs which contributes to RIII (Fig. 1H). To
test this hypothesis, we attempted to clarify the effect of ferroptosis on
IECs survival after IR in vitro. Unexpectedly, the death of IECs induced by
IR alone could not be rescued by Fer-1 (Fig. 3A and B), which suggested
IR alone did not trigger ferroptosis in IECs in vitro. We noticed that the
cell culture medium lacked PUFAs, which were abundant in gut and
critical to ferroptosis induction in the in vitro cell culture system [29]. To
better mimic the gut environment and to trigger ferroptosis in vitro, we
supplemented the culture medium with various types of common PUFAs
(Fig. 3A-C). Interestingly, only AA, but not other PUFAs, enhanced
IR-induced cell death in FHs74Int cells. Moreover, the enhanced part of
cell death with AA after IR was completely rescued by Fer-1 (Fig. 3B and
C). Correspondingly, the level of lipid peroxidation in FHs74Int cells
following IR was also remarkably enhanced with AA treatment and
significantly decreased with Fer-1 treatment in the presence of AA
(Fig. 3D). We also found that radiation-induced cell death and lipid
peroxidation were significantly enhanced by treatment with RSL3, a
well-known inducer of ferroptosis, in the presence of AA but not in the
absence of AA (Fig. 3E and F). These results indicate that AA is necessary
for IR-induced ferroptosis in IECs in vitro.

Since the intestinal stem cells (ISCs) located in the crypts are critical
to maintain intestinal integrity via differentiating into functional IECs
after IR, we next employed the model of intestinal organoid to
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Fig. 2. Fer-1 alleviates RIII in mice. (A) Treatment schema of mice with intraperitoneal injection (i.p.) of Fer-1 and ABI. (B) The percent survival of mice after 17 Gy
ABI. (C) Representative images of Masson staining of the jejunum sections from Vehicle- and Fer-1-treated mice at 12 weeks post 14 Gy ABI. Scale bar: 50 pm.
Quantification of the thickness of submucosa fibrous layer are depicted in (D), n = 3. *: p < 0.05.

investigate the effect of ferroptosis on IECs regeneration. As shown in
Fig. 3G&H, the survival fraction of organoids in AA + IR group was
significantly less than that in only IR group, while Fer-1 treatment
effectively only attenuated the organoids death induced by AA + IR but
not IR, and this also indicates that AA enhances ferroptosis following IR
to impair the survival of ISCs.

Furthermore, we also identified the effect of AA on RIII in vivo
(Fig. 3I). As shown in Fig. 3J&K, AA gavage remarkably elevated AA
levels in jejunums of mice and significantly aggravated the death of mice
after ABI. Taken together, radiation-induced ferroptosis in the presence
of AA not only mediated death of IECs but also impaired their regen-
eration, and excessive intake of AA might be a risk factor for RIIIL.

3.4. Radiation induces ferroptosis in IECs via ACSL4

We next explored the mechanism underlying radiation-induced fer-
roptosis in IECs. Interestingly, we found that radiation remarkably
upregulated the expression of ACSL4 proteins in both jejunums of mice
and FHs74Int cells (Fig. 4A-C). Moreover, the mRNA level of ACSL4
significantly increased following IR (Fig. 4D), consistent with the
RNAseq analysis results shown in Fig. 1E, suggesting that irradiation
might upregulate ACSL4 expression via activating its transcription.
Addition of AA did not increase the protein expression of ACSL4 after
irradiation (Fig. 4C). ACSL4 is one of ferroptosis-promoting proteins,
which functions as regulating PUFA-phospholipids biosynthesis and
preferentially utilizes AA as its substrate. To identify whether ACSL4 is a
critical enzyme to mediate radiation-induced ferroptosis, we employed
siRNA to interfere ACSL4 expression in FHs74Int cells (Fig. 4E). The
results revealed that radiation-induced cell death was attenuated after
ACSL4 interference (Fig. 4F). In line with the change of cell death,
radiation-induced lipid peroxidation in IECs also decreased in the group
of ACSL4 interference (Fig. 4G). Notably, the effect of ACSL4 interfer-
ence on inhibiting radiation-induced cell death and lipid peroxidation is
similar to that of Fer-1 treatment, suggesting that IR induced ferroptosis
in IECs mainly through ACSL4 (Fig. 4F and G). Moreover, we found that
rosiglitazone, an enzymatic inhibitor of ACSL4, effectively attenuated
radiation-induced cell death and lipid peroxidation of FHs74Int cells in a
concentration-dependent manner in the presence of AA (Fig. 4H and I).

Taken together, these results indicate that radiation induces ferroptosis
in the presence of AA in IECs via upregulating ACSLA4.

3.5. Radiation stimulates ACSL4 expression via STAT1/IRF1 axis

Signal transducers and activators of transcription 1 (STAT1), one
major transcription factor regulating gene expression in response to IFN-
Y, is frequently activated by irradiation in both tumor and normal tissue
[30-32]. Recently, STAT1 signaling pathway was demonstrated to
mediate ACSL4 expression upon IFN-y stimulation [21]. Herein, we
explored whether the radiation-induced ACSL4 expression was regu-
lated by STAT1 signaling pathway. As shown in Fig. 5A, the phosphor-
ylation level of STAT1 was elevated after irradiation, indicating that
irradiation activated STAT1 signaling in IECs. In order to verify the
connection between radiation-induced activation of STAT1 and ACSL4
expression, we knocked down STAT1 with siRNA interference. As shown
in Fig. 5B, the expression of ACSL4 protein remarkably decreased after
STAT1 siRNA interference. Consistent with the change of ACSL4 protein,
the transcription of ACSL4 induced by IR was also effectively inhibited
with STAT1 siRNA interference (Fig. 5C). As expected, the cell death and
production of lipid peroxidation induced by IR was significantly
decreased following STAT1 siRNA interference (Fig. 5D and E). More-
over, we found that the expression of IRF1 was inhibited by silencing
STAT1 with siRNA, which suggests that IRF1 works as a downstream of
STAT1 (Fig. 5F). Given IRF1 has five binding sites (BS1-5) in the pro-
moter region of ACSL4, we next investigated the possible role of IRF1 in
ferroptosis mediated by ACSL4 after irradiation. As shown in Fig. 5G&H,
the protein and mRNA expression levels of ACSL4 after irradiation
remarkably decreased after IRF1 siRNA interference. Moreover, the cell
death and production of lipid peroxidation induced by irradiation also
significantly decreased following IRF1 siRNA interference (Fig. 5I and
J). Taken together, these data suggest that STAT1/IRF1 axis is essential
to the expression of ACSL4 induced by irradiation.

3.6. AMPK activation triggered by AA negatively regulates radiation-
induced ferroptosis

Upon the intake of AA, the cellular energy status and fatty acid
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metabolism are likely to be altered. AMP-activated protein kinase
(AMPK) is a crucial sensor of cellular energy status, and plays a critical
role in maintaining the homeostasis of cellular energy and fatty acid
metabolism [33]. The potential role of AMPK activation in responding to
AA stimulation prompted us to explore the possible role of AMPK in
ferroptosis induced by AA + IR. Interestingly, AMPKa was remarkably
activated by AA but not irradiation (Fig. 6A). As expected, the expres-
sion of ACSL4 induced by IR was not affected with AMPKa siRNA
interference (Fig. 6B). However, we found the cell death and production
of lipid peroxidation induced by AA + IR were significantly enhanced
following AMPKa siRNA interference, which could be rescued by Fer-1
(Fig. 6C and D). Taken together, these results suggest that AMPK acti-
vation exerts negative regulation on ferroptosis induced by AA + IR.

4. Discussion

Recently, growing evidences show that multiple programmed cell
deaths (PCDs) including apoptosis, pyroptosis, autophagy and nec-
roptosis are involved in RIII [34-36]. Here, we found that ferroptosis, a
novel form of PCD, also played an important role in RIIIl. Moreover, we
revealed that IR induced ferroptosis in IECs via activating

STAT1-IRF1-ACSL4 pathway.

Ferroptosis occurs on the basis of excess ferrous iron and lipid per-
oxidation regulated by complex metabolic pathways. Our results of
RNAseq analysis showed that differentially expressed genes were
enriched in ferroptosis in jejunum specimens of RIIl mice. Among these
genes, the expression of ACSL4 is essential for ferroptosis execution
[17]. Genetically or pharmacologically inhibiting ACSL4 is a viable
therapeutic approach to prevent ferroptosis-related diseases. Tuo et al.
revealed that cerebral ischemia/reperfusion injury was prevented by
performing AAV-assisted ACSL4 knockout or using ACSL4 inhibitors
(triacsin C and pioglitazone) [37]. In the present study, we also found
the survival of IECs increased significantly after irradiation following
ACSL4 silence or treatment with rosiglitazone, an enzymatic inhibitor of
ACSL4. Given the importance of IECs in maintaining intestinal integrity,
targeted inhibition of ACSL4 would be a promising approach to mitigate
RIIL.

It is worth noting that ferroptosis is not only triggered by the fer-
roptosis promoting mechanisms, but also regulated by the anti-
ferroptosis mechanisms. We noticed that GPX4 expression was
remarkably reduced in RIII mice. GPX4 is the first known central anti-
ferroptosis enzyme utilizing glutathione (GSH) to protect cells from
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ferroptosis by eliminating phospholipid peroxides and cholesterol hy-
droperoxides [38]. The loss function of GPX4 results in
ferroptosis-related diseases such as neurodegeneration and ischemia/r-
eperfusion injury in kidney and liver [9]. However, whether GPX4
expression reduction plays a key role in RIII needs further studies.

AA, an essential 0-6 PUFA, can be obtained from diet or synthesized

through desaturation and chain elongation of linoleic acid [39]. As the
preferential substrate for ACSL4, AA plays a vital role in ferroptosis. It is
reported that AA triggers ferroptosis in GPX4-restricted IECs accompa-
nied with the increased transcription of inflammatory cytokines and
causes enteritis resembling Crohn’s disease [24]. Furthermore, the
addition of exogenous AA is essential for IFN-y-induced ferroptosis in
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tumor cells and enhances the sensitivity of mouse embryonic fibroblasts
to ferroptosis triggered by RSL3 in vitro [18,21]. Consistent with these
studies, we found exogenous AA significantly promoted ferroptosis in
IECs and intestinal organoids after IR in vitro. For the lack of AA in the
cell culture medium, supplementation of exogenous AA may enhance
ferroptosis via providing sufficient substrate for ACSL4 in vitro. Previous
studies showed that excessive dietary intake and mucosal accumulation
of AA was closely correlated with the risk of developing inflammatory
bowel disease (IBD) [40,41]. Our results suggest that AA is also a risk
factor for RIII and controlling the dietary intake of AA may be beneficial
in alleviating RIIL

Interestingly, our results further revealed that STAT1-IRF1 axis was
involved in IR + AA-induced ferroptosis. STAT1, an important tran-
scription factor, is essential for IFN signaling. Activated by multiple

stimulators such as cytokines, growth factors and hormones, the phos-
phorylated STAT1 translocates into the nucleus and binds to specific
promoters of target genes to promote gene expressions [42]. Numerous
studies identified the activation of STAT1 signaling as an important risk
factor involved in inflammatory diseases, such as asthma, rheumatoid
arthritis, ulcerative colitis and Crohn’s disease [43]. STAT1 cascade is
involved in different pathologies correlated to the inflammatory process
by regulating inflammation-related gene expression, such as inducible
nitric oxide synthase (iNOS), cyclooxygenase (COX), vascular cell
adhesion molecules (VCAM) and intercellular cell adhesion molecules
(ICAM) [44]. In the current study, our data demonstrated that phos-
phorylation of STAT1 induced by IR + AA contributed to ferroptosis in
IECs via promoting ACSL4 expression. However, the ENCODE chromatin
immunoprecipitation (ChIP)-seq database suggests the existence of the
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binding sites for IRF1, a well-known downstream target of STAT1
signaling, are at the promoter region of ACSL4 but not for STAT1 [21].
Therefore, STAT1 activation might induce the transcription of ACSL4 via
IRF1, which has been identified as a critical factor in mediating in-
flammatory cell death. The hypothesis was supported by our results that
silencing IRF1 effectively inhibited IR-induced ACSL4 expression and
ferroptosis. Hence, targeting STAT1-IRF1 axis may be a previously un-
appreciated approach to alleviate RIII. Nevertheless, the regulatory
mechanism underlying STAT1 activation following IR needs further
study.

In addition to the positive regulatory mechanism of ACSL4-mediated
ferroptosis, we also identified AMPK activation as a negative feedback
pathway for ferroptosis upon AA treatment. Once having sensed AA in
cells, AMPK was activated. It was reported that AMPK activation sup-
pressed the biosynthesis of AA-containing phosphatidylethanolamines
(PEs), the direct triggers for ferroptosis, via inducing phosphorylation of
acetyl-CoA carboxylase [45]. It is reasonable to infer that AMPK agonists
may also have the potential to relieve RIII.

In summary, the present study shows that ferroptosis via activating
STAT1-IRF1-ACSL4 pathway plays a critical role in RIII, and AMPK
activation functions as a negative feedback mechanism to inhibit fer-
roptosis induced by IR + AA (Fig. 6E). Additionally, reducing dietary
intake of AA, which functions as a risk factor for RIII, and targeting
STAT1-IRF1-ACSL4 signaling pathway or AMPK might be promising
therapeutic approaches to alleviate RIIL
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