A Statistical-Dynamical Seasonal Forecast of US Landfalling TC Activity

Johnny Chan and Samson K S Chiu

Guy Carpenter Asia-Pacific Climate Impact Centre

City University of Hong Kong

Research sponsored by Risk Prediction Initiative, Bermuda Institute of Ocean Sciences

Outline

- Background
- Climatology of US landfall
- Data and methodology
- Results and interpretation
- Summary

Statistical vs. Statistical-dynamical Methods

- Problem with the statistical method
 - Relate the past events and future conditions by statistics
 - Inherent problem
 - assumes the future would behave the same as the past, which may not be correct
- Statistical-dynamical method partly solves the inherent problem by
 - relating dynamical model predictions with future conditions

Objectives

- To prove the feasibility of the statistical-dynamical prediction scheme
 - To develop a statistical-dynamical seasonal prediction scheme for U.S. landfalling tropical cyclones
 - To develop a multi-model statisticaldynamical seasonal prediction scheme
 - To evaluate the performance of the predictions

Tropical cyclones data – HURDAT

- National Hurricane Center Hurricane Best Tracks Files
 - 6-hourly position and intensity of TCs
- 3 regions of the U.S. Atlantic coast
 - East Coast (Maine to Georgia)
 - Gulf Coast (Alabama to Texas)

GCACI

No. of US Atlantic landfalling TCs (Tropical Storm or above, 1980-2001)

Dynamical model data -DEMETER

- Development of a European multimodel ensemble system for seasonal to interannual prediction (from European Union)
 - 7 models (CERFACS, ECMWF, INGV, LODYC, Météo-France, MPI and UKMO)
 - 9 ensemble members each
 - 6 months forecasts available
 - Base time @ 1 Feb, May, Aug, Nov
 - 1980-2001 (22 years hindcast)
 - 2.5 x 2.5 degree resolution

Dynamical model data -DEMETER

Parameter	Physics	
Geopotential (200-, 500-, 850-hPa)	subtropical high	
Wind fields (200-, 500-, 850-hPa)	steering flow	
SST	TC genesis	
Sea-level pressure (SLP)	subtropical high, low for TC genesis	

Methodology

- Compute the 9-member ensemble mean of each model-predicted atmospheric fields (Aug-Sept)
 - Geopotential, zonal and meridional winds (3 levels)
 - SST, SLP
- Extract the first 4 EOF modes of each predictor fields
 - 11 fields x 4 modes = 44 potential predictors from each DEMETER model
- Test the statistical significance of the relationship between the coefficient of each mode and the number of landfalling TCs

GCACI

Methodology

- Fit a forecast equation for each regional # landfalling TCs
 - Poisson regression
 - Cross-validation (Jackknife method)
- 7 forecast equations, each from an individual model
- Multimodel equation derived from the 7 equations
 - Simple average
 - Agreement coefficient weighted-average

Regression

- Linear regression is used in most previous studies
 - Normality assumption of predictors and predictand
 - Fails in # landfalling TCs (Discrete non-negative integers)
- Poisson regression
 - Discrete probability distribution
 - Zero probability for negative numbers
- Stepwise regression

Factors affecting EC landfalling TCs

Level	Parameter	EOF mode
200 hPa	zonal wind	1
	zonal wind	3
	geopotential	1
500 hPa	zonal wind	1
	geopotential	1
	geopotential	4
850 hPa	meridional wind	1
surface	SST	1
	MSLP	1

200-hPa geopotential EOF 1 (-vely correlated with EC landfall)

500-hPa geopotential EOF 4 (-vely correlated with EC landfall)

Factors affecting GC landfalling TCs

Level	Parameter	EOF mode
200 hPa	zonal wind	1
	meridional wind	2
	geopotential	2
500 hPa	zonal wind	2
	meridional wind	2
	geopotential	4
850 hPa	zonal wind	1
	meridional wind	1
	meridional wind	3
	geopotential	2
	geopotential	4
surface	SST	1
	MSLP	2

500-hPa meridional wind EOF 2 (-vely correlated with Gulf of Mexico landfall)

850-hPa geopotential EOF 2 (-vely correlated with Gulf of Mexico landfall)

Factors affecting FL landfalling TCs

Level	Parameter	EOF mode
200 hPa	zonal wind	1
	meridional wind	2
	meridional wind	4
	geopotential	2
500 hPa	zonal wind	2
	meridional wind	3
850 hPa	zonal wind	1
	zonal wind	2
	geopotential	2
	geopotential	3
surface	SST	1
	SST	3
	MSLP	2

850-hPa meridional wind EOF 4

200-hPa geopotential EOF 2 (-vely correlated with FL landfall)

Summary

- A statistical-dynamical prediction scheme for U.S. landfalling TCs has been developed.
- Statistics
 - Significant skills over climatology:
 EC ~30%, GC ~40% and FL ~17%
 - Fair high agreement coefficient
 EC ~0.45, GC ~0.44 and FL ~0.34
- Most of the predictors are physically reasonable and are mostly related to the steering flow

Poission regression

Prob(# landfalling TC = y)

$$Pr(y) = \frac{e_i^y \exp(-e_i)}{y!}$$

Expected # landfalling TCs

$$e_{i} = \exp\left(\beta_{0} + \sum_{j} \beta_{j} x_{ij}\right)$$

Regression equation:

$$ln(e_i) = \beta_0 + \sum_i \beta_j x_j + \epsilon_i$$

Newton-Raphson iterative method (Wilks 2006)

$$\begin{pmatrix} \beta_0^{\text{new}} \\ \beta_1^{\text{new}} \end{pmatrix} = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} - \begin{pmatrix} -\sum_i e_i & -\sum_i x_i e_i \\ -\sum_i x_i e_i & -\sum_i x_i^2 e_i \end{pmatrix}^{-1} \begin{pmatrix} \sum_i (o_i - e_i) \\ \sum_i x_i (o_i - e_i) \end{pmatrix}$$

Residual deviance

$$D = 2 \sum_{i} o_{i} log \left(\frac{o_{i}}{e_{i}}\right)$$
 Smaller the D, better the reg. eqt.

Skill over climatology

$$S = \left(1 - \frac{RMSE_{scheme}}{RMSE_{clim}}\right) \times 100\%$$

Agreement coefficient

$$A = 1 - \frac{\frac{1}{n} \sum_{i} |o_i - c_i|}{\frac{1}{n} \sum_{i} \frac{1}{n} \sum_{k} |o_i - c_k|}$$

