

Guy Carpenter Asia-Pacific Climate Impact Centr City University of Hong Kong

香港城市大學 City University of Hong Kong

Changes in Track and Structure Associated With Tropical Cyclone Landfall

Johnny Chan

- Changes in track
- Convection distribution
- Summary

Changes in Track

Track – f plane experiments

Track – f plane experiments

Asymmetric flow RD experiment Day 1

Asymmetric flow RD experiment Day 6

Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, City University of Hong Kong

Track – β plane experiments NS-oriented coastline

Track – β plane experiments EW-oriented coastline

Land-induced flow

Hypothesis : TC circulation = Symmetric flow + Asymmetric flow

Asymmetric flow = Beta gyres + Land-Induced Flow Not present in the CTRL

Land-induced Flow = Asymmetric flow – Beta gyres = (Asymmetric flow) _{Landfall} – (Asymmetric flow) _{CTRL}

LL Asymmetric flow ($0.9 \ge \eta \ge 0.55$) t = 36 - 48 h

Rough and dry land

Evolution of asymmetric flow NSRD experiment

Evolution of asymmetric flow EWRD experiment

Changes in the location of onshore vs. offshore flow

Track – f plane experiments River Delta

x(km)

Track – f plane experiments Differential roughness

Summary on track changes

- An inherent vortex motion in the presence of a discontinuity in surface friction.
- Such motion is caused by two main processes:
 - the development of a "ventilation flow" associated with a vortex pair through the generation of relative vorticity from the divergent term in the vorticity equation
 - diabatic heating due to differential convergence

Summary on track changes

- Such an inherent motion modifies the beta effect so that different coastline orientation will cause the TC track to deviate differently.
- Differential friction over land will also cause track deviations towards rougher land

Convection Distribution

Convection associated with Hurricane Hugo (1989) at landfall

Convection associated with Typhoon Sam (1999) at landfall

Landfall Along the China Coast

Hourly Rain Rate within 200 km of TC centre (right minus left)

Mean Meridional Wind

Shear-induced convective asymmetry – left type

Shear-induced convective asymmetry – other type

Rainfall distribution over land at landfall

Rainfall distribution over land (within 300 km radius)

<u>At landfall</u>	Mean (mm/h)	Standard Deviation
Left Front Quadrant	16.31	15.16
Right Front Quadrant	31.05	21.93

50 km from coastline	Mean (mm/h)	Standard Deviation
Left Front Quadrant	15.04	16.38
Right Front Quadrant	34.80	21.09

Areas of composite reflectivity >= 55 dBZ within 75 km from TC centre

Points of Max Rainfall (land moving towards TC)

(from Tuleya and Kurihara 1978 JAS)

Points of Max Rainfall (U = -10 m s⁻¹)

32

Rainfall (0-300 km) with increased friction over land and no moisture flux

Summary

- Convection asymmetries appear to be prevalent around landfall.
- Such asymmetries are not only related to friction and moisture differences, but also to vertical wind shear, and topography.

34

