

能源及環境學院 SCHOOL OF ENERGY AND ENVIRONMENT

Tropical Cyclone Activities in the Asia-Pacific Region: Past Variations and Future Predictions

Johnny Chan

Guy Carpenter Asia-Pacific Climate Impact Centre School of Energy and Environment City University of Hong Kong

Atlantic 2005

Atlantic 2005

Annual No. of TCs in the Atlantic

Webster et al.'s (2005) Science paper

Outline

- Past variations of TC activity
 - Western North Pacific
 - North Indian Ocean
 - Southern Hemisphere
- Possible causes of such variations
- Future predictions/projections of TC activity
- Summary

Number of Tropical Cyclones Making Landfall in Japan

No. of Tropical Cyclones Making Landfall in Japan and Korea Every 5-year period (1970-2004)

No. of Tropical Cyclones Making Landfall in Japan and Korea

No. of Typhoons Making Landfall in Zhejiang Province Every 5-year period (1960-2005)

No. of Tropical Cyclones Making Landfall in Southern China Every 5-year period (1960-2005)

Number of tropical cyclones in the western North Pacific

ACE vs. May-Nov SSTA (5-30°N, 120-180°E)

Webster et al.'s (2005) Science paper

ACE vs. May-Nov SSTA (5-30°N, 120-180°E)

No. of Category 4 and 5 Typhoons

	1975-89	1990-2004
Number	75	115
Percentage	32	42

No. of Category 4 and 5 Typhoons

	1960-74	1975-89	1990-2004
Number	105	75	115
Percentage	37	32	42

Variations of Landfall in Different Regions in East Asia

Tropical Cyclone Activity in the North Indian Ocean

Annual anomaly of TCs

Entire basin

Bay of Bengal

Arabian Sea

Anomaly of no. of intense TCs

Tropical Cyclone Activity in the Southern Hemisphere

Tropical Cyclone Activity in the Australian region

El Niño/Southern Oscillation (ENSO)

No. of TCs in the western North Pacific

Anomalies in TC Activity During an El Niño year

Annual TC activity anomaly, EN year

Anomalies in TC Activity During an La Niña year

Annual TC activity anomaly, LN year

Western North Pacific TCs in 1997 – an El Niño year

Western North Pacific TCs in 1998 – a La Niña year

Tropical Cyclone Activity in the Australian region

Typical Examples in El Niño and La Niña years

Indian Ocean Dipole

Positive Dipole Mode

Negative Dipole Mode

positive mode

negative mode

Typical Tracks in IOD+ and IOD- years

Anomalous frequency of occurrence (1998/99) IOD-

Pacific Decadal Oscillation

Pacific Decadal Oscillation – PDO index

monthly values for the PDO index: 1900-September 2009

PDO effects on tropical cyclone intensity

Ratio (%) of number of tropical storms in global warming experiment to number without global warming

Experiment	Blue/red: statistically-significant values								
	Global	NH	SH			Ocean basin			
				N Atl.	WN Pac.	NE Pac.	N Indian	S Indian	SW Pac.
10y 1xCO2, 2xCO2	66	72	61	161	34	33	109	43	69
10y 1xCO2 2xCO2 from 115y CO2 1% pa	102			86	111	91	116	124	99
15y IS95a 2082-2097	94	97	90	75	70	180	142	110	82
10y A1B 2080-2099	70	72	68	134	62	66	48	72	57
2071-2100, A1B		92		92	80	104	74		
2071-2100, A1B		90		87	72	93	49		
A1B, 2180-2200			86	102	106	95	92		

Distribution of Maximum Wind Speeds for 20th and 21st Century Simulations (Northern Hemisphere)

Distribution of Maximum Rotation for 20th and 21st Century Simulations

Dynamical downscaling

Global Scale, ~ 200 km

Dynamical downscaling

Example of a tropical cyclone in the model

Model Climatology (1982-2001, May to Oct)

Model Climatology (1982-2001, May to Oct)

Model vs. Observed (1997, May to Oct)

Model vs. Observed (1998, May to Oct)

Example of simulation of a 3-month forecast

Summary

- Tropical cyclone activity does not show any trend in any of the Asia-Pacific ocean basins. In other words, global warming is not contributing to the observed variations in TC activity.
- Instead, TC activity goes through largeamplitude variations on time scales from a few years to a few decades.

Summary

- The El Niño phenomenon is an important factor in contributing towards the variations in TC activity in each of the regions, as well as the variations in TC landfall locations.
- Other atmospheric and ocean conditions are also likely to affect such variations but more research is necessary to ascertain the physical processes involved.

Summary

- Future projections suggest the possibility of higher frequency of intense TCs although the percentage change is small.
- Improved predictions of TC activity on a seasonal scale may come through better regional model integrations.

