Global Warming and Tropical Cyclone Activity in the western North Pacific

Johnny Chan

Guy Carpenter Asia-Pacific Climate Impact Centre City University of Hong Kong

SRC:GUAMGSRS SAT:GMS_VS PRO:SAT REG:b_typhoon CLRMAP:UNDEFINED 97_09_0

Outline

- The common perception
- Actual observations and possible explanations of the variations of the following TC characteristics
 - numbers and intensity
 - tracks and landfall locations
 - Summary

GCAC

The "Common" Perception

SRC:GUAMGSRS SAT:GMS_VS PRO:SAT REG:b_typhoon CLRMAP:UNDEFINED 97_09_09

Emanuel's (2005) Nature paper

W. North Pacific PDI: (max wind)³

Webster et al.'s (2005) Science paper

Number of Tropical Cyclones Making Landfall in Japan

Number of Tropical Cyclones Making Landfall in Japan and Korea Every 5-year period (1970-2004)

No. of Tropical Cyclones Making Landfall in Japan and Korea

The "Common" Conclusion

Tropical cyclone activity and that of intense typhoons in the western North Pacific, as well as the number of tropical cyclones making landfall along the Asian coast have been on the increase as a result of global warming.

Actual observations and explanations – Number and Intensity

SRC:GUAMGSRS SAT:GMS_VS PRO:SAT REG:b_typhoon CLRMAP:UNDEFINED 97_09_09

Number of TCs in WNP (from JTWC)

UCACI

Number of Typhoons Making Landfall in Guangdong/Hainan (South China) Every 5-year period (1960-2005)

GLACIC

ACE vs. May-Nov SSTA (5-30°N, 120-180°E)

[standardized = (raw-mean)/S.D.]

Webster et al.'s (2005) Science paper

ACE vs. May-Nov SSTA (5-30°N, 120-180°E)

[standardized = (raw-mean)/S.D.]

No. of Category 4 and 5 Typhoons

	1975-89	1990-2004
Number	75	115
Percentage	32	42

No. of Category 4 and 5 Typhoons

	1960-74	1975-89	1990-2004
Number	105	75	115
Percentage	37	32	42

ACE vs.. VORT, SHEAR and MSE Science, <u>311</u>, 1713b, *Tellus 2007*

ACE vs. May-Nov SSTA (5-30°N, 120-180°E) [10-year Gaussian-filtered; standardized]

ACE vs. May-Nov SSTA (5-30°N, 120-180°E) [10-year Gaussian-filtered; standardized]

Wavelet Analysis of Intense Typhoon Occurrence Frequency

time (year)

Difference in the Frequency of Occurrence of Intense Typhoons Proceedings, Royal Society A (2008)

Period A1 minus Period B

Period A2 minus Period B

Blue shading: 95%

Green shading: 90%

Actual observations and explanations – Track and Landfall Variations

SRC:GUAMGSRS SAT:GMS_VS PRO:SAT REG:b_typhoon CLRMAP:UNDEFINED 97_09_09

Time series of EOFs of 10-year-filtered TC occurrence

Anomalous TS occurrence (1977-88)

Frequency of Tropical Cyclone Occurrence

Landfall Groupings [all tropical cyclones (TCs) with maximum winds at landfall > 17 m s⁻¹]

south Asia TCs	TCs making landfall in south China,
(STC)	Vietnam and the Philippines
middle Asia TCs (MTC)	TCs making landfall in East China (Taiwan, Fujian, Zhejiang and Jiangsu provinces, and City of Shanghai)
north Asia TCs	TCs making landfall in the Korean
(NTC)	Peninsula and Japan
Asian TCs (ATC)	All TCs making landfall anywhere in East Asia

SRC:GUAMGSRS SAT:GMS_VS PRO:SAT REG:b_typhoon CLRMAP:UNDEFINED 97_09_09

Variations of Landfall in Each Area at Various Oscillation Periods

TC Landfalling Frequency (16-32 year period)

Landfall in East Asia vs. TC Activity over the Western North Pacific at the 16-32-year Oscillation Period

GCACI

Summary

- No significant trend in any of the TC characteristics (number, intensity, track types, landfall locations) can be identified. In other words, TC activity in the western North Pacific does not follow the trend in the global increase in atmospheric or sea-surface temperature.
- Instead, all such characteristics go through large interannual and interdecadal variations.

GCAC

Summary

- Such variations are very much related and apparently caused by similar variations in the planetary-scale atmospheric and oceanographic features that also <u>do not</u> have the same trend as the global increase in air temperature
- Unless the temporal variations of such features become linear, these TC characteristics are not expected to vary linearly with time.

Summary

 Even if the observed global warming has an effect, it is probably in the noise level relative to the large interdecadal variations and therefore is not detectable.

