能源及環境學院 SCHOOL OF ENERGY AND ENVIRONMENT

Tropical Cyclone Climate in the AsiaPacific Region and the Indian Oceans

Johnny Chan

Guy Carpenter Asia-Pacific Climate Impact Centre School of Energy and Environment City University of Hong Kong

Annual No. of TS & TY in the western North Pacific

SST (5-30°N, 120-160°E)

Annual No. of TS & TY in the western North Pacific

Anomaly of TC No. in the North Indian Ocean

a. NTC

SST (0-15°N, 50-100°E)

Anomaly of TC No. in the North Indian Ocean

a. NTC

Annual No. of TCs in the Australian region

SST (0-30°S, 105-160°E)

Annual No. of TCs in the Australian region

Annual No. of TS & TY in the western North Pacific

Emanuel's (2005) Nature paper

W. North Pacific PDI: (max wind)³

Correlation between SST (May-Nov) and % of Typhoons

May-Nov SSTA; High vs. Low ACE (≥|0.5σ|)

May-Nov 850U; High vs. Low ACE (≥|0.5σ|)

May-Nov 200U; High vs. Low ACE (≥|0.5σ|)

ACE vs.. VORT, SHEAR and MSE

Science, 311, 1713b, Tellus 2007

21-year running correlations between MPI & NCat45

Ocean Basin	Period	Correlation (best track)	Correlation (Kossin et al. 2007)
Atlantic	1960-2007	0.45	
	1970-2007	0.59	
	1980-2007	0.63	
	1979-2006	0.61	0.61
Western North Pacific	1960-2007	-0.01	
	1970-2007	-0.06	
	1980-2007	-0.08	
	1981-2006	-0.13	-0.36
Eastern North Pacific	1960-2007	0.29	
	1970-2007	0.35	
	1980-2007	0.34	
South Indian Ocean	1981-2007	0.35	
South Pacific	1981-2007	0.03	

21-year running correlations with NCat45 - WNP

21-year running correlations with WNP NCat45

Variations of Landfall in Each Area at Various Oscillation Periods

No. of Landfalling TCs in the Philippines

No. of Landfalling TCs in South China

Number

No. of Landfalling TCs in East China

Correlation between SST and BB TCs

BB local SST VS BB ACE (OND)

Correlation between SST and BB TCs after removal of ENSO

EOF1 (12.5%)

Typical Examples for EOF1

EOF2 (10 %)

Dipole Mode Index (Sep-Nov) vs PC2

Typical Tracks in IOD+ and IOD- years

EOF3 (9.1 %)

No. of Southern Hemisphere TCs vs PC3

Typical track patterns in high and low activity years

Nov-Apr 850-hPa wind anomalies EOF1+ vs EOF1-

Sep-Nov SST anomalies EOF2+ vs EOF2-

Sep-Nov 850-hPa wind anomalies EOF2+ vs EOF2-

Nov-Apr 850-hPa wind anomalies EOF2+ vs EOF2-

1987/88, 1994/95, 2002/03, 2006/07

Summary

- Variations of TC activity on climate (interannual or interdecadal) time scales in the western North Pacific, Indian Oceans and the Southern Hemisphere cannot be explained by <u>local</u> SST variations, which suggests that global warming cannot be attributed to the observed TC variability.
- Dynamic factors (horizontal and vertical shear), which can be forced by <u>remote</u> SST variations such as ENSO or IOD, are mainly responsible for the observed TC variability in these regions.
- Models must be demonstrated to be capable of simulating variations in these dynamic factors before their predictions can be used to project future TC activity in these regions.